全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

Epicatechin potentiation of glucose-stimulated insulin secretion in INS-1 cells is not dependent on its antioxidant activity

DOI: 10.1038/aps.2017.174

Keywords: epicatechin, flavonoids, hyperglycemia, oxidative stress, insulin secretion, CaMKII signaling pathway, GPR40, KN-93, GW1100

Full-Text   Cite this paper   Add to My Lib

Abstract:

Epicatechin (EC) is a monomeric flavan-3-ol. We have previously demonstrated that glucose-intolerant rats fed flavan-3-ols exhibit improved pancreatic islet function corresponding with an increase in circulating EC-derived metabolites. Thus, we speculate that EC may act as a cellular signaling molecule in vivo to modulate insulin secretion. In this study we further examined the effects of different concentrations of EC on H2O2 or hyperglycemia-induced ROS production, as well as on saturated fatty acid (SFA)-impaired glucose-stimulated insulin secretion (GSIS) in INS-1 cell line in vitro. We showed that EC at a high concentration (30 μmol/L), but not a low concentration (0.3 μmol/L), significantly decreased H2O2 or hyperglycemia-induced ROS production in INS-1 cells. However, EC (0.3 μmol/L) significantly enhanced SFA-impaired GSIS in INS-1 cells. Addition of KN-93, a CaMKII inhibitor, blocked the effect of EC on insulin secretion and decreased CaMKII phosphorylation. Addition of GW1100, a GPR40 antagonist, significantly attenuated EC-enhanced GSIS, but only marginally affected CaMKII phosphorylation. These results demonstrate that EC at a physiological concentration promotes GSIS in SFA-impaired β-cells via activation of the CaMKII pathway and is consistent with its function as a GPR40 ligand. The findings support a role for EC as a cellular signaling molecule in vivo and further delineate the signaling pathways of EC in β-cells

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413