全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

PAPR Reduction Approach Based on Channel Estimation Pilots for Next Generations Broadcasting Systems

DOI: 10.1155/2011/365896

Full-Text   Cite this paper   Add to My Lib

Abstract:

A novel peak-to-average power ratio (PAPR) reduction technique for orthogonal frequency division multiplexing (OFDM) systems is addressed. Instead of using dedicated pilots for PAPR reduction as with tone reservation (TR) method selected by the DVB-T2 standard, we propose to use existing pilots used for channel estimation. In this way, we avoid the use of reserved tone pilots and then improve the spectral efficiency of the system. In order to allow their recovery at the receiver, these pilots have to follow particular laws which permit their blind detection and avoid sending side information. In this work, we propose and investigate a multiplicative law operating in discrete frequency domain. The operation in discrete domain aims at reducing degradation due to detection and estimation error in continuous domain. Simulation results are performed using the new DVB-T2 standard parameters. Its performance is compared to the DVB-T2 PAPR gradient algorithm and to the second-order cone programming (SOCP) competitive technique proposed in the literature. We show that the proposed technique is efficient in terms of PAPR reduction value and of spectral efficiency while the channel estimation performance is maintained. 1. Introduction orthogonal frequency division multiplexing (OFDM) technology has been the subject of numerous dissertations in recent years, mainly due to its several advantages for mobile wireless communications. It has been adopted in several systems mainly in digital video broadcasting (DVB) standards [1–3]. However, a main drawback of OFDM technique is the high peak-to-average power ratio (PAPR) of the transmitted signal. High PAPR value implies sophisticated and, thus, expensive radio transmitters with high-power amplifiers (HPAs) operating on a very large linear range at the transmitter side. Moreover, the nonlinearity of the HPA leads to in-band distortion, which increases the bit error rate (BER) of the system, and to out-of-band (OOB) distortion, which introduces high adjacent channel interference. Various approaches have been proposed as summarized in [4, 5] to mitigate the PAPR of an OFDM signal. Among them, clipping and filtering technique is easy to implement. However, these schemes yield a broken system performance since clipping is a nonlinear process [6] leading to a signal distortion. An alternative method based on coding was proposed in [7], in which a data sequence is embedded in a longer sequence, and only a subset of all these possible sequences is used to exclude patterns generating high PAPR. Moreover, other methods such as

References

[1]  DVB, “Frame structure channel coding and modulation for a second generation digital terrestrial television broadcasting system (DVB-T2),” ETSI EN 302755 V1.1.1 September 2009.
[2]  U. Reimers, “Digital video broadcasting,” IEEE Communications Magazine, vol. 36, no. 6, pp. 104–110, 1998.
[3]  R. Van Nee and R. Prasad, OFDM for Wireless Multimedia Communications, Artech House, Boston, Mass, USA, 2000.
[4]  M. J. F. G. García, O. Edfors, and J. M. Páez-Borrallo, “Peak power reduction for OFDM systems with orthogonal pilot sequences,” IEEE Transactions on Wireless Communications, vol. 5, no. 1, pp. 47–51, 2006.
[5]  S. H. Han and J. H. Lee, “An overview of peak-to-average power ratio reduction techniques for multicarrier transmission,” IEEE Wireless Communications, vol. 12, no. 2, pp. 56–65, 2005.
[6]  X. Li and L. J. Cimini, “Effects of clipping and filtering on the performance of OFDM,” in Proceedings of the 47th IEEE Vehicular Technology Conference (VTC '97), vol. 3, pp. 1634–1638, Phoenix, Ariz, USA, May 1997.
[7]  A. E. Jones, T. A. Wilkinson, and S. K. Barton, “Block coding scheme for reduction of peak to mean envelope power ratio of multicarrier transmission schemes,” Electronics Letters, vol. 30, no. 25, pp. 2098–2099, 1994.
[8]  S. H. Müller and J. B. Huber, “OFDM with reduced peak-to-average power ratio by optimum combination of partial transmit sequences,” Electronics Letters, vol. 33, no. 5, pp. 368–369, 1997.
[9]  R. W. B?uml, R. F. H. Fischer, and J. B. Huber, “Reducing the peak-to-average power ratio of multicarrier modulation by selected mapping,” Electronics Letters, vol. 32, no. 22, pp. 2056–2057, 1996.
[10]  A. D. S. Jayalath and C. Tellambura, “Reducing the peak-to-average power ratio of orthogonal frequency division multiplexing signal through bit or symbol interleaving,” Electronics Letters, vol. 36, no. 13, pp. 1161–1163, 2000.
[11]  B. S. Krongold and D. L. Jones, “PAR reduction in OFDM via active constellation extension,” IEEE Transactions on Broadcasting, vol. 49, no. 3, pp. 258–268, 2003.
[12]  J. Tellado-Mourelo, Peak-to-average power ratio reduction for multicarrier Modulation, Ph.D. thesis, Stanford University, September 1999.
[13]  I. M. Mahafeno, Y. Lou?t, and J. F. Hélard, “Peak-to-average power ratio reduction using second order cone programming based tone reservation for terrestrial digital video broadcasting systems,” IET Communications, vol. 3, no. 7, pp. 1250–1261, 2009.
[14]  A. Aggarwal and T. H. Meng, “Minimizing the peak-to-average power ratio of OFDM signals using convex optimization,” IEEE Transactions on Signal Processing, vol. 54, no. 8, pp. 3099–3110, 2006.
[15]  S. Zabre, J. Palicot, Y. Lou?t, and C. Lereau, “SOCP approach for OFDM peak-to-average power ratio reduction in the signal adding context,” in Proceedings of the 6th IEEE International Symposium on Signal Processing and Information Technology (ISSPIT '07), pp. 834–839, Vancouver, Canada, August 2007.
[16]  M. Sharif, M. Gharavi-Alkhansari, and B. H. Khalaj, “On the peak-to-average power of OFDM signals based on oversampling,” IEEE Transactions on Communications, vol. 51, no. 1, pp. 72–78, 2003.
[17]  R. van Nee and A. de Wild, “Reducing the peak-to-average power ratio of OFDM,” in Proceedings of the 48th IEEE Vehicular Technology Conference (VTC '98), vol. 3, pp. 2072–2076, Ottawa, Canada, May 1998.
[18]  DVB, “Implementation guidelines for a second generation digital terrestrial television broadcasting system (DVB-T2),” ETSI TR 102 831 V0.9.17 November 2009.
[19]  M. K. Simon, Probability Distributions Involving Gaussian Random Variables, Springer, New York, NY, USA, 2006.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133