全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

An Efficient Periodic Broadcasting with Small Latency and Buffer Demand for Near Video on Demand

DOI: 10.1155/2012/717538

Full-Text   Cite this paper   Add to My Lib

Abstract:

Broadcasting Protocols can efficiently transmit videos that simultaneously shared by clients with partitioning the videos into segments. Many studies focus on decreasing clients' waiting time, such as the fixed-delay pagoda broadcasting (FDPB) and the harmonic broadcasting schemes. However, limited-capability client devices such as PDAs and set-top boxes (STBs) suffer from storing a significant fraction of each video while it is being watched. How to reduce clients' buffer demands is thus an important issue. Related works include the staircase broadcasting (SB), the reverse fast broadcasting (RFB), and the hybrid broadcasting (HyB) schemes. This work improves FDPB to save client buffering space as well as waiting time. In comparison with SB, RFB, and HyB, the improved FDPB scheme can yield the smallest waiting time under the same buffer requirements. 1. Introduction How to efficiently maintain the exhausted bandwidth with the growth in the number of clients is an important issue of VOD deployment. Dan et al. [1] presented that 80 percent of the demand is for a few number (10 or 20) of very popular videos. One way to broadcast a popular video is to partition the video into segments, which are transmitted on several channels currently and periodically. The approach (called periodic broadcasting [2]) lets multiple users share channels and thus obtains high bandwidth utilization. One of the channels only broadcasts the first segment in real time. The other channels transmit the remaining segments. When clients want to watch a video, they wait for the beginning of the first segment on the first channel. While clients start watching the video, their set-top boxes (STBs) or computers still download and buffer unreceived segments from the channels to enable them to play the video continuously. The staggered broadcasting [3] scheme treats a complete video as a single segment and then transmits it on each channel at different start times. The fast broadcasting (FB) scheme [4] improves segment partitioning and arrangement to yield shorter service latency. The harmonic broadcasting (HB) scheme [5] initially partitions a video into equally sized segments, which are further divided into smaller subsegments according to the harmonic series. HB can yield the minimum waiting time [6]; however, its implementation is difficult due to the multitude of broadcasting channels [7]. The recursive frequency-splitting (RFS) [7] scheme broadcasts a segment as close to its frequency as possible to achieve a near-minimal waiting time. The study [8] focuses on reducing the

References

[1]  A. Dan, D. Sitaram, and P. Shahabuddin, “Dynamic batching policies for an on-demand video server,” Multimedia Systems, vol. 4, no. 3, pp. 112–121, 1996.
[2]  D. Saparilla, K. W. Ross, and M. Reisslein, “Periodic broadcasting with VBR-encoded video,” in Proceedings of the 18th Annual Joint Conference of the IEEE Computer and Communications Societie (INFOCOM '99), pp. 464–471, March 1999.
[3]  K. C. Almeroth and M. H. Ammar, “The use of multicast delivery to provide a scalable and interactive video-on-demand service,” IEEE Journal on Selected Areas in Communications, vol. 14, no. 6, pp. 1110–1122, 1996.
[4]  L-S. Juhn and L. M. Tseng, “Fast data broadcasting and receiving scheme for popular video service,” IEEE Transactions on Broadcasting, vol. 44, no. 1, pp. 100–105, 1998.
[5]  L.-S. Juhn and L. M. Tseng, “Harmonic broadcasting for video-on-demand service,” IEEE Transactions on Broadcasting, vol. 43, no. 3, pp. 268–271, 1997.
[6]  Z.-Y. Yang, L. S. Juhn, and L. M. Tseng, “On optimal broadcasting scheme for popular video service,” IEEE Transactions on Broadcasting, vol. 45, no. 3, pp. 318–322, 1999.
[7]  Y.–C. Tseng, M. H. Yang, and C. H. Chang, “A recursive frequency-splitting scheme for broadcasting hot videos in VOD service,” IEEE Transactions on Communications, vol. 50, no. 8, pp. 1348–1355, 2002.
[8]  J.-P. Sheu, H. L. Wang, C. H. Chang, and Y. C. Tseng, “A fast video-on-demand broadcasting scheme for popular videos,” IEEE Transactions on Broadcasting, vol. 50, no. 2, pp. 120–125, 2004.
[9]  J. F. Paris, “A fixed-delay broadcasting protocol for video-on-demand,” in Proceedings of the 10th International Conference on Computer Communications and Networks (ICCCN '01), pp. 418–423, Scottsdale, Ariz, USA, October 2001.
[10]  L.-S. Juhn and L. M. Tseng, “Staircase data broadcasting and receiving scheme for hot video service,” IEEE Transactions on Consumer Electronics, vol. 43, no. 4, pp. 1110–1117, 1997.
[11]  H.-F. Yu, H. C. Yang, and L. M. Tseng, “Reverse Fast Broadcasting (RFB) for video-on-demand applications,” IEEE Transactions on Broadcasting, vol. 53, no. 1, pp. 103–110, 2007.
[12]  H.-F. Yu, “Hybrid broadcasting with small buffer demand and waiting time for video-on-demand applications,” IEEE Transactions on Broadcasting, vol. 54, no. 2, Article ID 4433980, pp. 304–311, 2008.
[13]  H.-F. Yu, P. H. Ho, and H. C. Yang, “Generalized Sequence-Based and Reverse Sequence-Based Models for Broadcasting Hot Videos,” IEEE Transactions on Multimedia, 2008.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133