全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

An FBXW7-ZEB2 axis links EMT and tumour microenvironment to promote colorectal cancer stem cells and chemoresistance

DOI: 10.1038/s41389-019-0125-3

Full-Text   Cite this paper   Add to My Lib

Abstract:

a Left, 2DE and MALDI-MS-based identification of novel Fbxw7-associated proteins using crypts (upper panel) isolated from 3-week fbxw7fl/fl and fbxw7ΔG mice. Yellow circles in the lower panel denote potential Fbxw7-associated proteins. a Right, WB analysis (upper panels), and RT-PCR analysis (lower panels) of fbxw7fl/fl vs. fbxw7ΔG derived crypts and intestinal proteins and mRNA expression for ZEB2 and β-actin control. Experiments were performed on at least three independent occasions. b Left, schematic representation of the modified yeast two-hybrid reverse Ras Recruitment Screening (rRRS) system identifying proteins interacting with Fbxw7 in a GSK-3β phosphorylation-dependent manner. GSK-3β under the control of the methionine-regulated MET3 promoter induces phosphorylation of encoded myristoylated proteins through a cDNA library plus positive control expressing FLAG-β-catenin (B—Middle) which only rescued the growth of cdc25–2 mutant yeast by Fbxw7-associated protein(s), if they interact with RasV12-FBXW7ΔF (i.e. human FBXW7α isoform mutant lacking F-box domain; therefore, interaction with Skp1 is lost and degradation of SCFFbxw7 substrates will not occur in yeast) used as a bait at the restrictive temperature 37?°C, in a methionine-dependent manner. In the FBXW7ΔF mutant, both the N-terminal F-box and Dim-domains are deleted to avoid any interactions with SKP1 and other FBXW7 isoform-associated proteins. Thus, cdc25–2 mutant yeasts can grow only at 37?°C, when a phosphorylation-dependent interaction between a protein target and RasV12-FBXW7ΔF takes place. The FBXW7ΔF(bait)-dependent growth of these clones was further analysed on galactose-containing medium at 37?°C (B—Right). Red circles show the GSK-3β-phosphorylation-dependent interactor, including the Zeb2-clone, green circles show the phosphorylation/non-phosphorylation-dependent interactor and blue circles show the revertant clones (B—Right). c Left, subcellular localisation of GFP-fused human ZEB2 in the absence (top; nuclear) and presence (bottom; nuclear spots indicative of protein degradation) of GSK-3β in HCT116 CRC cells. (c—Middle and c—Right) WB analysis of total ZEB2 protein level following the inhibition of GSK-3β (e.g. WS119 or LiCl treatment, and siRNA against GSK-3β) and of UPS pathways (MG132) in SW620 CRC cells. d Direct binding and ubiquitin-dependent degradation of ZEB2 by FBXW7. Co-immunoprecipitation (IP) of ZEB2 upon pull-down of FBXW7 in HEK-293T cells (Left); co-IP of FBXW7 upon pull-down of ZEB2 using the TNT-coupled reticulocyte lysate (Middle), and ubiquitination assays

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413