全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Ecofriendly Synthesis of Anisotropic Gold Nanoparticles: A Potential Candidate of SERS Studies

DOI: 10.1155/2012/276246

Full-Text   Cite this paper   Add to My Lib

Abstract:

Ecofriendly synthesis of nanoparticles has been inspiring to nanotechnologists especially for biomedical applications. Moreover, anisotropic particle synthesis is an attractive option due to decreased symmetry of such particles often leads to new and unusual chemical and physical behaviour. This paper reports a single-step room-temperature synthesis of gold nanotriangles using a cheap bioresource of reducing and stabilizing agent Piper betle leaf extract. On treating aqueous chloroauric acid solution with Piper betle leaf extract, after 12 hr, complete reduction of the chloroaurate ions was observed leading to the formation of flat and single crystalline gold nanotriangles. These gold nanotriangles can be exploited in photonics, optical coating, optoelectronics, magnetism, catalysis, chemical sensing, and so forth, and are a potential candidate of SERS studies. 1. Introduction The synthesis of metal and semiconductor nanoparticles has innumerable opportunities of research due to their present and future applications in biosensing [1], chemical sensing [2], recording media [3], optoelectronics [4], and catalysis [5]. Masatake has reported [6] gold as a novel catalyst in the 21st century: it’s preparation, working mechanism, and application as the catalyst in CO oxidation. The majority of earlier research has focused on isotropic, that is, spherical particles. However, anisotropic particles are particularly interesting because the decreased symmetry of such particles often leads to new and unusual chemical and physical properties [7]. In this context, ecofriendly biosynthesis protocols are better roadmap to avoid adverse effects of nanomaterials especially in medical applications. Moreover, use of plant extracts as a reducing and capping agent for the synthesis of nanoparticles could be advantageous over other environmentally benign biological processes by eliminating the elaborate process of maintaining cell cultures. It can also be suitably scaled up for the large-scale synthesis of nanoparticles. The biosynthesis of platinum nanoparticles using Diospyros kaki leaf extract [8], silver nanoparticles using leaf extracts [9], silver and gold nanoparticles using phyllanthin [10], Clove extract [11], and within live Alfalfa plants in solid media [12] has been demonstrated. In recent studies, we have reported on the synthesis of gold nanoparticles by the reduction of aqueous ions using Cymbopogon flexuosus [13], Tamarindus indica [2], Emblica officinalis [14], Terminalia catappa [15], Murraya koenigii and Citrus limonum leaf extracts [16]. In the case of

References

[1]  C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, “A DNA-based method for rationally assembling nanoparticles into macroscopic materials,” Nature, vol. 382, no. 6592, pp. 607–609, 1996.
[2]  B. Ankamwar, M. Chaudhary, and M. Sastry, “Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor sensing,” Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, vol. 35, no. 1, pp. 19–26, 2005.
[3]  S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, “Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices,” Science, vol. 287, no. 5460, pp. 1989–1992, 2000.
[4]  D. H. Gracias, J. Tien, T. L. Breen, C. Hsu, and G. M. Whitesides, “Forming electrical networks in three dimensions by self-assembly,” Science, vol. 289, no. 5482, pp. 1170–1172, 2000.
[5]  M. Valden, X. Lai, and D. W. Goodman, “Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties,” Science, vol. 281, no. 5383, pp. 1647–1650, 1998.
[6]  H. Masatake, “Gold as a novel catalyst in the 21st century: Preparation, working mechanism and applications,” Gold Bulletin, vol. 37, no. 1-2, pp. 27–36, 2004.
[7]  J. E. Millstone, S. J. Hurst, G. S. Métraux, J. I. Cutler, and C. A. Mirkin, “Colloidal gold and silver triangular nanoprisms,” Small, vol. 5, no. 6, pp. 646–664, 2009.
[8]  J. Y. Song, E. Y. Kwon, and B. S. Kim, “Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extractBioprocess and Biosystems Engineering,” vol. 33, pp. 159–164, 2010.
[9]  J. Y. Song and B. S. Kim, “Rapid biological synthesis of silver nanoparticles using plant leaf extracts,” Bioprocess and Biosystems Engineering, vol. 32, pp. 79–84, 2009.
[10]  J. Kasthuri, K. Kathiravan, and N. Rajendiran, “Phyllanthin-assisted biosynthesis of silver and gold nanoparticles: a novel biological approach,” Journal of Nanoparticle Research, vol. 11, no. 5, pp. 1075–1085, 2009.
[11]  A. K. Singh, M. Talat, D. P. Singh, and O. N. Srivastava, “Biosynthesis of gold and silver nanoparticles by natural precursor clove and their functionalization with amine group,” Journal of Nanoparticle Research, vol. 12, no. 5, pp. 1667–1675, 2010.
[12]  J. L. Gardea-Torresdey, E. Gomez, J. R. Peralta-Videa, J. G. Parsons, H. Troiani, and M. Jose-Yacaman, “Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles,” Langmuir, vol. 19, no. 4, pp. 1357–1361, 2003.
[13]  S. S. Shankar, A. Rai, B. Ankamwar, A. Singh, A. Ahmad, and M. Sastry, “Biological synthesis of triangular gold nanoprisms,” Nature Materials, vol. 3, no. 7, pp. 482–488, 2004.
[14]  B. Ankamwar, C. Damle, A. Ahmad, and M. Sastry, “Biosynthesis of gold and silver nanoparticles using Emblica Officinalis fruit extract, their phase transfer and transmetallation in an organic solution,” Journal of Nanoscience and Nanotechnology, vol. 5, no. 10, pp. 1665–1671, 2005.
[15]  B. Ankamwar, “Biosynthesis of gold nanoparticles (Green-Gold) using leaf extract of Terminalia Catappa,” E-Journal of Chemistry, vol. 7, no. 4, pp. 1334–1339, 2010.
[16]  B. Ankamwar, Biosynthesis: An Eco-Friendly Approach of Nanomaterials Synthesis, Chemical and Biomedical Applications, VDM, 2010.
[17]  P. Hildebrandt and M. Stockburger, “Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver,” The Journal of Physical Chemistry B, vol. 88, no. 24, pp. 5935–5944, 1984.
[18]  X. M. Dou, Y. M. Jung, Z. Q. Cao, and Y. Ozaki, “Surface-enhanced raman scattering of biological molecules on metal colloid II: effects of aggregation of gold colloid and comparison of effects of ph of glycine solutions between gold and silver colloids,” Applied Spectroscopy, vol. 53, no. 11, pp. 1440–1447, 1999.
[19]  H. X. Xu, J. Aizpurua, M. Kall, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Physical Review E, vol. 62, pp. 4318–4324, 2000.
[20]  A. Sabur, M. Havel, and Y. Gogotsi, “SERS intensity optimization by controlling the size and shape of faceted gold nanoparticles,” Journal of Raman Spectroscopy, vol. 39, no. 1, pp. 61–67, 2008.
[21]  ?. Krpeti?, L. Guerrini, I. A. Larmour, J. Reglinski, K. Faulds, and D. Graham, “Importance of nanoparticle size in colorimetric and sers-based multimodal trace detection of Ni(II) Ions with functional gold nanoparticles,” Small, vol. 8, pp. 707–714, 2012.
[22]  H. W. Cheng and R. Q. Yu, “Nanoparticle-based substrates for surface-enhanced Raman scattering detection of bacterial spores,” Analyst, vol. 137, pp. 3601–3608, 2012.
[23]  G. V. Pavankumar, “Gold nanoparticle-coated biomaterial as SERS micro-probes,” Bulletin of Materials Science, vol. 34, no. 3, pp. 417–422, 2011.
[24]  P. Mulvaney, “Surface plasmon spectroscopy of nanosized metal particles,” Langmuir, vol. 12, no. 3, pp. 788–800, 1996.
[25]  E. Hao, K. L. Kelly, J. T. Hupp, and G. C. Schatz, “Synthesis of silver nanodisks using polystyrene mesospheres as templates,” Journal of the American Chemical Society, vol. 124, no. 51, pp. 15182–15183, 2002.
[26]  N. Malikova, I. Pastoriza-Santos, M. Schierhorn, N. A. Kotov, and L. M. Liz-Marzán, “Layer-by-layer assembled mixed spherical and planar gold nanoparticles: control of interparticle interactions,” Langmuir, vol. 18, no. 9, pp. 3694–3697, 2002.
[27]  Y. Shao, Y. Jin, and S. Dong, “Synthesis of gold nanoplates by aspartate reduction of gold chloride,” Chemical Communications, vol. 10, no. 9, pp. 1104–1105, 2004.
[28]  S. Chen and D. L. Carroll, “Synthesis and characterization of truncated triangular silver nanoplates,” Nano Letters, vol. 2, no. 9, pp. 1003–1007, 2002.
[29]  R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science, vol. 294, no. 5548, pp. 1901–1903, 2001.
[30]  W. T. S. Huck, N. Bowden, P. Onck, T. Pardoen, J. W. Hutchinson, and G. M. Whitesides, “Ordering of spontaneously formed buckles on planar surfaces,” Langmuir, vol. 16, no. 7, pp. 3497–3501, 2000.
[31]  K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” The Journal of Physical Chemistry B, vol. 107, no. 3, pp. 668–677, 2003.
[32]  Y. L. Luo, “Large-scale preparation of single-crystalline gold nanoplates,” Materials Letters, vol. 61, no. 6, pp. 1346–1349, 2007.
[33]  K. L. Shuford, M. A. Ratner, and G. C. Schatz, “Multipolar excitation in triangular nanoprisms,” The Journal of Chemical Physics, vol. 123, no. 11, pp. 114713–114722, 2005.
[34]  G. S. Métraux and C. A. Mirkin, “Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness,” Advanced Materials, vol. 17, no. 4, pp. 412–415, 2005.
[35]  K. Sneha, M. Sathishkumar, S. Kim, and Y. S. Yun, “Counter ions and temperature incorporated tailoring of biogenic gold nanoparticles,” Process Biochemistry, vol. 45, no. 9, pp. 1450–1458, 2010.
[36]  A. Krishnamurthi, Ed., The Wealth of India, A Dictionary of Indian Raw Materials & Industrial Products, vol. 8 of Raw Materials, National Institute of Science Communication, CSIR, New Delhi, India, 1998.
[37]  V. Patil, R. B. Malvankar, and M. Sastry, “Role of particle size in individual and competitive diffusion of carboxylic acid derivatized colloidal gold particles in thermally evaporated fatty amine films,” Langmuir, vol. 15, no. 23, pp. 8197–8206, 1999.
[38]  D. V. Leff, L. Brandt, and J. R. Heath, “Synthesis and characterization of hydrophobic, organically-soluble gold nanocrystals functionalized with primary amines,” Langmuir, vol. 12, no. 20, pp. 4723–4730, 1996.
[39]  P. Raveendran, J. Fu, and S. L. Wallen, “Completely “green" synthesis and stabilization of metal nanoparticles,” Journal of the American Chemical Society, vol. 125, no. 46, pp. 13940–13941, 2003.
[40]  L. R. Hirsch, R. J. Stafford, J. A. Bankson et al., “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 23, pp. 13549–13554, 2003.
[41]  J. E. Millstone, S. Park, K. L. Shuford, L. Qin, G. C. Schatz, and C. A. Mirkin, “Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms,” Journal of the American Chemical Society, vol. 127, no. 15, pp. 5312–5313, 2005.
[42]  C. Xue and C. A. Mirkin, “pH-switchable silver nanoprism growth pathways,” Angewandte Chemie International Edition, vol. 46, no. 12, pp. 2036–2038, 2007.
[43]  R. Jin, Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature, vol. 425, no. 6957, pp. 487–490, 2003.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133