全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Graphene  2019 

A Review Paper on Graphene Coated Fibres

DOI: 10.4236/graphene.2019.84004, PP. 53-74

Keywords: Graphene, Carbon Fiber, Natural Fiber, Organic Fibres, Fibers

Full-Text   Cite this paper   Add to My Lib

Abstract:

Graphene is now known as a super material because of its fascinating physical properties. Due to a great scope of research, it has now become a center of attraction of research scholars in physics, chemistry as well as materials science to study and explore its potential applications. In this paper, a brief review is presented on the various graphene synthesis methods and a short introduction of different types of fibres is discussed. Various studies have been carried out to obtain graphene coating on different fibres and observe the changes in their physical and chemical properties. This paper also provides the different types of coating methods used to form graphene layer on the fibres discussed.

References

[1]  Thomas, H., Herwig, P. and Kromp, K. (1995) Coating of Carbon Fibre—Strength of Fibre. Journal of American Ceramic Society, 78, 133-136.
https://doi.org/10.1111/j.1151-2916.1995.tb08372.x
[2]  Zhang, X.Q., et al. (2012) Interfacial Microstructure and Properties of Carbon Fibre Composites Modified with Graphene Oxide. ACS Applied Materials & Interfaces, 4, 1543-1552.
[3]  Li, C.Q., Wang, X.L., Xu, L.H., Gao, A.J. and Xu, D.H. (2019) Preparation of Graphene Oxide/Polyacrylonitrile Fibre from Graphene Oxide Solution with High Dispersivity. Composite Interfaces, 27, 177-190.
[4]  Li, F., Liu, Y., Qu, C.-B., Xiao, H.-M., Hua, Y., Sui, G.-X. and Fu, S.-Y. (2015) Enhanced Mechanical Properties of Short Carbon Fibre Reinforced Polyethersulfone Composites by Graphene Oxide Coating. Polymer Journal, 59, 155-165.
https://doi.org/10.1016/j.polymer.2014.12.067
[5]  Dong, J.D., Jia, C.Y., Song, Y.J., He, J.M. and Huang, Y.D. (2017) Improved Interfacial Properties of Carbon Fibre-Reinforced Epoxy Composites with Fe2O3/Graphene Nanosheets Using a Magnetic Field. Journal of Adhesion Science and Technology, 32, 1018-1026.
https://doi.org/10.1080/01694243.2017.1398852
[6]  Liu, Y.D. and Kumar, S. (2013) Recent Progress in Fabrication, Structure, and Properties of Carbon Fibres. Polymer Journal Review, 52, 234-258.
https://doi.org/10.1080/15583724.2012.705410
[7]  Kumari, N. and Kumar, K. (2018) Mechanical Behaviour of Graphene and Carbon Fibre Reinforced Epoxy Based Hybrid Nanocomposites for Orthotic Calipers. Journal of Experimental Nanoscience, 13, S14-S23.
https://doi.org/10.1080/17458080.2018.1431847
[8]  Chen, S., Shen, B. and Sun, F. (2017) The Influence of Normal Load on the Tribological Performance of Electrophoretic Deposition Prepared Graphene Coating on Microcrystalline Diamond Surface. Diamond and Related Materials, 76, 50-57.
https://doi.org/10.1016/j.diamond.2017.04.008
[9]  Li, G., Shrotriya, V., Huang, J.S., Yao, Y., Moriarty, T., Emery, K., et al. (2015) High-Efficiency Solution Processable Polymer Photovoltaic Cells by Self-Organization of Polymer Blends. Nature Materials, 4, 864-868.
[10]  Qiu, J., Zhang, C., Wang, B. and Liang, R. (2007) Carbon Nanotube Integrated Multifunctional Multiscale Composites. Nanotechnology, 18, Article ID: 275708.
https://doi.org/10.1088/0957-4484/18/27/275708
[11]  Eda, G., Lin, Y.Y., Miller, S., Chen, C.W., Su, W.F. and Chhowalla, M. (2008) Transparent and Conducting Electrodes for Organic Electronics from Reduced Graphene Oxide. Applied Physics Letters, 92, Article ID: 233305.
https://doi.org/10.1063/1.2937846
[12]  Feng, J., Wang, X., Tian, Y., Bu, Y., Luo, C. and Sun, M. (2017) Electrophoretic Deposition of Graphene Oxide onto Carbon Fibres for In-Tube Solid-Phase Microextraction. Journal of Chromatography A, 1517, 209-214.
https://doi.org/10.1016/j.chroma.2017.07.086
[13]  Botas, C., álvarez, P., Blanco, P., Granda, M., Blanco, C., Santamaría, R., Romasanta, L.J., Verdejo, R., López-Manchado, M.A. and Menéndez, R. (2013) Graphene Materials with Different Structures Prepared from the Same Graphite by the Hummers and Brodie Methods. Carbon, 65, 156-164.
https://doi.org/10.1016/j.carbon.2013.08.009
[14]  Su, Q., Pang, S., Alijani, V., Li, C., Feng, X. and Mullen, K. (2009) Composites of Graphene with Large Aromatic Molecules. Advanced Materials, 21, 3191-3195.
https://doi.org/10.1002/adma.200803808
[15]  Mahmood, H., Tripathi, M., Pugno, N. and Pegoretti, A. (2016) Enhancement of Interfacial Adhesion in Glass Fibre/Epoxy Composites by Electrophoretic Deposition of Graphene Oxide on Glass Fibres. Composites Science and Technology, 126, 149-157.
https://doi.org/10.1016/j.compscitech.2016.02.016
[16]  Varshney, P., Deepa, M., Sharma, N. and Agnihotry, S.A. (2002) Transmission Enhancement in Tin Oxide Conductive Coatings for ECWs. Solid State Ionics, 152, 877-881.
https://doi.org/10.1016/S0167-2738(02)00389-2
[17]  Srivastava, S., Kumar, V., Ali, M.A., Solanki, P.R., Srivastava, A., Sumana, G., Saxena, P.S., Joshi, A.G. and Malhotra, B.D. (2013) Electrophoretically Deposited Reduced Graphene Oxide Platform for Food Toxin Detection. Nanoscale, 5, 3043-3051.
https://doi.org/10.1039/c3nr32242d
[18]  Sánchez-Campo, M., Jiménez-Suárez, A. and Ureña, A. (2013) Effect of the Carbon Nanotube Functionalization on Flexural Properties of Multiscale Carbon Fibre/ Epoxy Composites Manufactured by VARIM. Composites Part B, 45, 1613-1619.
https://doi.org/10.1016/j.compositesb.2012.09.063
[19]  Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., et al. (2004) Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666-669.
https://doi.org/10.1126/science.1102896
[20]  Bolotin, K.I., Sikes, K.J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P. and Stormer, H.L. (2008) Ultrahigh Electron Mobility in Suspended Graphene. Solid State Communications, 146, 351-355.
https://doi.org/10.1016/j.ssc.2008.02.024
[21]  Kenry, Lee, W.C., Loh, K.P., et al. (2018) When Stem Cells Meet Graphene: Opportunities and Challenges in Regenerative Medicine. Biomaterials, 155, 236-250.
https://doi.org/10.1016/j.biomaterials.2017.10.004
[22]  Mikolajick, T., Salinga, M., Kund, M. and Kever, T. (2009) Nonvolatile Memory Concepts Based on Resistive Switching in Inorganic Materials. Advanced Engineering Materials, 11, 235-240.
https://doi.org/10.1002/adem.200800294
[23]  Ku, S.H., Lee, M. and Park, C.B. (2013) Carbon-Based Nanomaterials for Tissue Engineering. Advanced Healthcare Materials, 2, 244-260.
https://doi.org/10.1002/adhm.201200307
[24]  Stout, D.A. and Webster, T.J. (2012) Carbon Nanotubes for Stem Cell Control. Mater Today, 15, 312-318.
https://doi.org/10.1016/S1369-7021(12)70136-0
[25]  Moser, J., Barreiro, A. and Bachtold, A. (2007) Current-Induced Cleaning of Graphene. Applied Physics Letters, 91, Article ID: 163513.
https://doi.org/10.1063/1.2789673
[26]  He, C.L., Zhuge, F., Zhou, X.F., Li, M., Zhou, G.C., Liu, Y.W., Wang, J.Z., Chen, B., Su, W.J., Liu, Z.P., Wu, Y.H., Cui, P. and Li, R.-W. (2009) Nonvolatile Resistive Switching in Graphene Oxide Thin Films. Applied Physics Letters, 95, 232.
https://doi.org/10.1063/1.3271177
[27]  Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., et al. (2008) Superior Thermal Conductivity of Single-Layer Graphene. Nano Letters, 8, 902-907.
https://doi.org/10.1021/nl0731872
[28]  Jiang, J.J., et al. (2016) Preparation of Graphene Oxide Coatings onto Carbon Fibres by Electrophoretic Deposition for Enhancing Interfacial Strength in Carbon Fibre Composites. Journal of the Electrochemical Society, 163, D133-D139.
https://doi.org/10.1149/2.0571605jes
[29]  Qin, W.Z., et al. (2014) Mechanical and Electrical Properties of Carbon Fibre Composites with Incorporation of Graphene Nanoplatelets at the Fibre-Matrix Interphase. Composites Part B: Engineering, 69, 335-341.
[30]  Vázquez-Moreno, J.M., Sánchez-Hidalgo, R., Sanz-Horcajo, E., Viña, J., Verdejo, R. and López-Manchado, M.A. (2019) Preparation and Mechanical Properties of Graphene/Carbon Fibre-Reinforced Hierarchical Polymer Composites. Journal of Composites Science, 3, 30.
https://doi.org/10.3390/jcs3010030
[31]  He, R.Q., Chang, Q.X., Huang, X.J. and Bo, J. (2018) Improved Mechanical Properties of Carbon Fibre Reinforced PTFE Composites by Growing Grapheme Oxide on Carbon Fibre Surface. Composite Interfaces, 25, 995-1004.
[32]  Li, X., Zhu, Y., Cai, W., Borysiak, M., Han, B., Chen, D., Piner, R.D., Colombo, L. and Ruoff, R.S. (2009) Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Letters, 9, 4359.
https://doi.org/10.1021/nl902623y
[33]  Mo, X., Wei, Y., Zhang, X., et al. (2016) Enhanced Stem Cell Osteogenic Differentiation by Bioactive Glass Functionalized Graphene Oxide Substrates. Journal of Nanomaterials, 2016, Article ID: 5613980.
https://doi.org/10.1155/2016/5613980
[34]  Sugiyama, K., Ishii, H., Ouchi, Y. and Seki, K. (2000) Dependence of Indium-Tinoxide Work Function on Surface Cleaning Method as Studied by Ultraviolet and X-Ray Photoemission Spectroscopies. Journal of Applied Physics, 87, 295-298.
https://doi.org/10.1063/1.371859
[35]  Blake, P., Brimicombe, P.D., Nair, R.R., Booth, T.J., Jiang, D., Schedin, F., et al. (2008) Graphene-Based Liquid Crystal Device. Nano Letters, 8, 1704-1708.
https://doi.org/10.1021/nl080649i
[36]  Boehm, H.P., Setton, R. and Stumpp, E. (1986) Nomenclature and Terminology of Graphite Intercalation Compounds. Carbon, 24, 241-245.
https://doi.org/10.1016/0008-6223(86)90126-0
[37]  Vanbommel, A.J., Crombeen, J.E. and Vantooren, A. (1975) LEED and Auger Electron Observations of the SiC(0001) Surface. Surface Science, 48, 463-472.
https://doi.org/10.1016/0039-6028(75)90419-7
[38]  Mueller, S.M. and Glowacki, J. (2001) Age-Related Decline in the Osteogenic Potential of Human Bone Marrow Cells Cultured in Three-Dimensional Collagen Sponges. Journal of Cellular Biochemistry, 82, 583-590.
https://doi.org/10.1002/jcb.1174
[39]  Butler, M.A. (1977) Photoelectrolysis and Physical Properties of the Semiconducting Electrode WO3. Journal of Applied Physics, 48, 1914-1920.
https://doi.org/10.1063/1.323948
[40]  Dimitrakakis, G.K., Tylianakis, E. and Froudakis, G.E. (2008) Pillared Graphene: A New 3-D Network Nanostructure for Enhanced Hydrogen Storage. Nano Letters, 8, 3166-3170.
https://doi.org/10.1021/nl801417w
[41]  Mahmood, H., Vanzetti, L., Bersani, M. and Pegoretti, A. (2018) Mechanical Properties and Strain Monitoring of Glass-Epoxy Composites with Graphene-Coated Fibres. Composites: Part A, 107, 112-123.
https://doi.org/10.1016/j.compositesa.2017.12.023
[42]  Fang, M.H., Xiong, X.H., Hao, Y.B., Zhang, T.X., Wang, H., Cheng, H.-M. and Zeng, Y. (2019) Preparation of Highly Conductive Graphene-Coated Glass Fibres by Sol-Gel and Dip-Coating Method. Journal of Materials Science & Technology, 35, 1989-1995.
https://doi.org/10.1016/j.jmst.2019.05.027
[43]  Chen, J., Zhao, D., Jin, X., Wang, C.C., Wang, D.Z. and Ge, H.Y. (2014) Modifying Glass Fibres with Graphene Oxide: Towards High-Performance Polymer Composites. Composites Science and Technology, 97, 41-45.
https://doi.org/10.1016/j.compscitech.2014.03.023
[44]  Kymakis, E., Stratakis, E., Stylianakis, M.M., Koudoumas, E. and Fotakis, C. (2011) Spin Coated Graphene Films as the Transparent Electrode in Organic Photovoltaic Devices. Thin Solid Films, 520, 1238-1241.
https://doi.org/10.1016/j.tsf.2011.04.208
[45]  Girei, S.H., Shabaneh, A.A., Ngee-Lim, H., Hamidon, M.N., Mahdi, M.A. and Yaacob, M.H. (2015) Tapered Optical Fibre Coated with Graphene Based Nanomaterials for Measurement of Ethanol Concentrations in Water. Optical Review, 22, 385-392.
https://doi.org/10.1007/s10043-015-0075-8
[46]  Zhang, X., Hirai, M., Cantero, S., et al. (2011) Isolation and Characterization of Mesenchymal Stem Cells from Human Umbilical Cord Blood: Reevaluation of Critical Factors for Successful Isolation and High Ability to Proliferate and Differentiate to Chondrocytes as Compared to Mesenchymal Stem Cells from Bone Marrow and Adipose Tissue. Journal of Cellular Biochemistry, 112, 1206-1218.
https://doi.org/10.1002/jcb.23042
[47]  Stankovich, S., Dikin, D.A., Piner, R.D., et al. (2007) Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide. Carbon, 45, 1558-1565.
https://doi.org/10.1016/j.carbon.2007.02.034
[48]  Mimeault, M., Hauke, R., Mehta, P.P., et al. (2007) Recent Advances in Cancer Stem/Progenitor Cell Research: Therapeutic Implications for Overcoming Resistance to the Most Aggressive Cancers. Journal of Cellular and Molecular Medicine, 11, 981-1011.
https://doi.org/10.1111/j.1582-4934.2007.00088.x
[49]  Jiao, L.Y., Zhang, L., Wang, X.R., Diankov, G. and Dai, H.J. (2009) Narrow Graphene Nanoribbons from Carbon Nanotubes. Nature, 458, 877-880.
https://doi.org/10.1038/nature07919
[50]  Zhang, Z., Shao, C., Li, X., et al. (2010) Electrospunnanofibres of p-Type NiO/ n-Type ZnO Heterojunctions with Enhanced Photocatalytic Activity. ACS Applied Materials & Interfaces, 2, 2915-2923.
https://doi.org/10.1021/am100618h
[51]  Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T. and Ruoff, R.S. (2006) Graphene-Based Composite Materials. Nature, 442, 282-286.
https://doi.org/10.1038/nature04969
[52]  Nagamura-Inoue, T. and He, H. (2014) Umbilical Cord-Derived Mesenchymal Stem Cells: Their Advantages and Potential Clinical Utility. World Journal of Stem Cells, 6, 195-202.
https://doi.org/10.4252/wjsc.v6.i2.195
[53]  Baksh, D., Yao, R. and Tuan, R.S. (2007) Comparison of Proliferative and Multilineage Differentiation Potential of Human Mesenchymal Stem Cells Derived from Umbilical Cord and Bone Marrow. Stem Cells, 25, 1384-1392.
https://doi.org/10.1634/stemcells.2006-0709
[54]  Li, X.S., Cai, W.W., An, J.H., Kim, S., Nah, J., Yang, D.X., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L. and Ruoff, R.S. (2009) Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science, 324, 1312-1314.
https://doi.org/10.1126/science.1171245
[55]  Williams, G., Seger, B. and Kamat, P.V. (2008) TiO2-Graphene Nanocomposites. UV-Assisted Photocatalytic Reduction of Graphene Oxide. ACS Nano, 2, 1487-1491.
https://doi.org/10.1021/nn800251f
[56]  Foroutan, T., Nazemi, N., Tavana, M., et al. (2018) Suspended Graphene Oxide Nanoparticle for Accelerated Multilayer Osteoblast Attachment. Journal of Biomedical Materials Research, 106, 293-303.
https://doi.org/10.1002/jbm.a.36231
[57]  Roy, H.V., Kallinger, C. and Sattler, K. (1998) Manipulation of Graphitic Sheets Using a Tunneling Microscope. Journal of Applied Physics, 83, 4695.
https://doi.org/10.1063/1.367257
[58]  Steinberg, D., Gerosa, R.M., Pellicer, F.N., Domingues, S.H., Thoroh de Souza, E.A. and Saito, L.A.M. (2017) Sub-300 fs Mode-Locked Erbium Doped Fibre Laser Using Graphene Oxide and Reduced Graphene Oxide onto D-Shaped Optical Fibres. SBMO/ IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), Aguas de Lindoia, 27-30 Aug. 2017.
https://doi.org/10.1109/IMOC.2017.8121086
[59]  Wang, H., Vinodgopal, K. and Dai, G.P. (2018) Large-Area Synthesis and Growth Mechanism of Graphene by Chemical Vapor Deposition. In: Chemical Vapor Deposition for Nanotechnology, IntechOpen, London.
[60]  Liang, X., Chang, A.S.P., Zhang, Y., Harteneck, B.D., Choo, H., Olynick, D.L. and Cabrini, S. (2008) Electrostatic Force Assisted Exfoliation of Prepatterned Few-Layer Graphenes into Device Sites. Nano Letters, 9, 467-472.
https://doi.org/10.1021/nl803512z
[61]  Grabowska, I., Streminska, W., Janczyk-Ilach, K., et al. (2013) Myogenic Potential of Mesenchymal Stem Cells—The Case of Adhesive Fraction of Human Umbilical Cord Blood Cells. Current Stem Cell Research & Therapy, 8, 82-90.
https://doi.org/10.2174/1574888X11308010010
[62]  Behabtu, N., Lomeda, J.R., Green, M.J., Higginbotham, A.L., Sinitskii, A., Kosynkin, D.V., Tsentalovich, D., Parra-Vasquez, A.N.G., Schmidt, J., Kesselman, E., Cohen, Y., Talmon, Y., Tour, J.M. and Pasquali, M. (2010) Spontaneous High-Concentration Dispersions and Liquid Crystals of Grapheme. Nature Nanotechnology, 5, 406-411.
https://doi.org/10.1038/nnano.2010.86
[63]  Rollings, E., Gweon, G.-H., Zhou, S.Y., Mun, B.S., McChesney, J.L., Hussain, B.S., Fedorov, A.V., First, P.N., First, P.N., de Heer, W.A. and Lanzar, A. (2006) Synthesis and Characterization of Atomically Thin Graphite Films on a Silicon Carbide Substrate. Journal of Physics and Chemistry of Solids, 67, 2172-2177.
https://doi.org/10.1016/j.jpcs.2006.05.010
[64]  Rao, C.N.R., Maitra, U. and Matte, H.S.S.R. (2013) Synthesis, Characterization, and Selected Properties of Graphene. In: Rao, C.N.R. and Sood, A.K., Eds., Graphene: Synthesis, Properties, and Phenomena, Wiley-VCH, Hoboken.
https://doi.org/10.1002/9783527651122.ch1
[65]  Gong, X.Y., Liu, Y.Y., Wang, Y.S., et al. (2019) Amino Graphene Oxide/Dopamine Modified Aramid Fibres: Preperation, Epoxy Nanocomposite and Property Analysis. Polymer, 168, 131-137.
https://doi.org/10.1016/j.polymer.2019.02.021
[66]  Park, J., Kim, B., Han, J., et al. (2015) Graphene Oxide Flakes as a Cellular Adhesive: Prevention of Reactive Oxygen Species Mediated Death of Implanted Cells for Cardiac Repair. ACS Nano, 9, 4987-4999.
https://doi.org/10.1021/nn507149w
[67]  Zhang, L.W., Fu, H.B. and Zhu, Y.F. (2008) Efficient TiO2 Photocatalysts from Surface Hybridization of TiO2 Particles with Graphite-Like Carbon. Advanced Functional Materials, 18, 2180-2189.
https://doi.org/10.1002/adfm.200701478
[68]  Park, S. and Ruoff, R.S. (2009) Chemical Methods for the Production of Graphenes. Nature Nanotech, 4, 217-224.
https://doi.org/10.1038/nnano.2009.58
[69]  Ulisses, O.C., Lucio Fabio, C.N., et al. (2019) Effect of Graphene Oxide Coating on Natural Fibre Composite for Multilayered Ballistic Armor. Polymer, 11, 1356.
[70]  Nguang, S.Y., Wong, S.R., Law, J.S., et al. (2017) Enhancing Adsorption Property of Engelhard Titanosilicate-10 through Incorporation of Graphene Oxide. Microporous and Mesoporous Materials, 252, 125-139.
https://doi.org/10.1016/j.micromeso.2017.06.007
[71]  Heer, D.W.A., Berger, C., Wu, X., First, P.N., Conrad, E.H., Li, X., Li, T., Sprinkle, M., Hass, J., Sadowski, M.L., Potemski, M. and Martinez, G. (2007) Epitaxial Graphene. Solid State Communications, 143, 92-100.
https://doi.org/10.1016/j.ssc.2007.04.023
[72]  Preetam, S.B. and Satyendra, M. (2019) Enriched Mechanical Properties of Epoxy/ Coir Fibre Composites with Graphene Oxide. Research & Development in Material Science, 10, RDMS.000749.
https://doi.org/10.31031/RDMS.2019.10.000749
[73]  Weaver, C.L. and Cui, X.T. (2015) Directed Neural Stem Cell Differentiation with a Functionalized Graphene Oxide Nanocomposite. Advanced Healthcare Materials, 4, 1408-1416.
https://doi.org/10.1002/adhm.201500056
[74]  Zhou, X., Zhang, J., Wu, H., Yang, H., Zhang, J. and Guo, S. (2011) Reducing Graphene Oxide via Hydroxylamine: A Simple and Efficient Route to Graphene. The Journal of Physical Chemistry C, 115, 11957-11961.
https://doi.org/10.1021/jp202575j
[75]  Kobayashi, T., Bando, M., Kimura, N., Shimizu, K., Kadono, K., Umezu, N., et al. (2013) Production of a 100-m-Long High-Quality Graphene Transparent Conductive Film by Roll-to-Roll Chemical Vapor Deposition and Transfer Process. Applied Physics Letters, 102, Article ID: 023112.
https://doi.org/10.1063/1.4776707
[76]  Park, J.K., Do, I.H., Askeland, P. and Drzal, L.T. (2008) Electrodeposition of Exfoliated Graphite Nanoplatelets onto Carbon Fibres and Properties of Their Epoxy Composites. Composites Science and Technology, 68, 1734-1741.
https://doi.org/10.1016/j.compscitech.2008.02.002
[77]  Molina-Valdovinos, S., et al. (2018) Low-Dimensional Thermoelectricity in Graphene: The Case of Gated Graphene Superlattices. Physica E: Low-Dimensional Systems and Nanostructures, 101, 188-196.
https://doi.org/10.1016/j.physe.2018.03.005
[78]  Geng, D., Wu, B., Guo, Y., et al. (2012) From the Cover: Uniform Hexagonal Graphene Flakes and Films Grown on Liquid Copper Surface. Proceedings of the National Academy of Sciences of the United States of America, 109, 7992-7996.
https://doi.org/10.1073/pnas.1200339109
[79]  Becerril, H.A., Mao, J., Liu, Z., Stoltenberg, R.M., Bao, Z. and Chen, Y. (2008) Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors. ACS Nano, 3, 463-470.
https://doi.org/10.1021/nn700375n
[80]  Hallad, S.A., Banapurmath, N.R., Patil, V., Ajarekar, V.S., et al. (2018) Graphene Reinforced Natural Fiber Nanocomposites for Structural Applications. IOP Conference Series: Materials Science and Engineering, 376, Article ID: 012072.
https://doi.org/10.1088/1757-899X/376/1/012072
[81]  Gurunathan, S., Han, J.W., Eppakayala, V. and Kim, J.-H. (2013) Biocompatibility of Microbially Reduced Graphene Oxide in Primary Mouse Embryonic Fibroblast Cells. Colloids and Surfaces B: Biointerfaces, 105, 58-66.
https://doi.org/10.1016/j.colsurfb.2012.12.036
[82]  Li, P., Zhao, L.B., Jiang, Z.D., Yu, M.Z., Li, Z., Zhou, X.Y. and Zhao, Y.L. (2019) A Wearable and Sensitive Graphene-Cotton Based Pressure Sensor for Human Physiological Signals Monitoring. Scientific Report, 9, Article No. 14457.
[83]  Yamada, T., Ishihara, M. and Hasegawa, M. (2013) Large Area Coating of Graphene at Low Temperature Using a Roll-to-Roll Microwave Plasma Chemical Vapor Deposition. Thin Solid Films, 532, 89-93.
https://doi.org/10.1016/j.tsf.2012.12.102

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413