全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Studying the Impact of Vaccination Strategy and Key Parameters on Infectious Disease Models

DOI: 10.4236/ojop.2020.93007, PP. 86-104

Keywords: Optimal Control, S-I-R Model, S-E-I-R Model, LHS Monte Carlo Method, Fourth Order Runge-Kutta

Full-Text   Cite this paper   Add to My Lib

Abstract:

In the current work, we study two infectious disease models and we use nonlinear optimization and optimal control theory which helps to find strategies towards transmission control and to forecast the international spread of the infectious diseases. The relationship between epidemiology, mathematical modeling and computational tools lets us to build and test theories on the development and fighting with a disease. This study is motivated by the study of epidemiological models applied to infectious diseases in an optimal control perspective. We use the numerical methods to display the solutions of the optimal control problems to find the effect of vaccination on these models. Finally, global sensitivity analysis LHS Monte Carlo method using Partial Rank Correlation Coefficient (PRCC) has been performed to investigate the key parameters in model equations. This present work will advance the understanding about the spread of infectious diseases and lead to novel conceptual understanding for spread of them.

References

[1]  Urabe, C.T., Tanaka, G., Aihara, K. and Mimura, M. (2017) Parameter Scaling for Epidemic Size in a Spatial Epidemic Model with Mobile Individuals. PLoS ONE, 11, e0168127.
https://doi.org/10.1371/journal.pone.0168127
[2]  Li, G.-H. and Zhang, Y.-X. (2016) Dynamic Behaviors of a Modified SIR Model in Epidemic Diseases Using Nonlinear Incidence and Recovery Rates. PLoS ONE, 12, e0175789.
https://doi.org/10.1371/journal.pone.0175789
[3]  Huang, C.X., Cao, J., Wen, F.H. and Yang, X.G. (2016) Stability Analysis of SIR Model with Distributed Delay on Complex Networks. PLoS ONE, 11, e0158813.
https://doi.org/10.1371/journal.pone.0158813
[4]  Bauch, C., d’Onofrio, A. and Manfredi, P. (2013) Behavioral Epidemiology of Infectious Diseases: An Overview. In: Modeling the Interplay between Human Behavior and the Spread of Infectious Diseases, Springer, Berlin, 1-19.
https://doi.org/10.1007/978-1-4614-5474-8_1
[5]  Kirk, D.E. (2004) Optimal Control Theory: An Introduction. Courier Corporation, North Chelmsford.
[6]  Bryson, A.E. (1996) Optimal Control-1950 to 1985. IEEE Control Systems Magazine, 16, 26-33.
https://doi.org/10.1109/37.506395
[7]  Rodrigues, H.S. (2014) Optimal Control and Numerical Optimization Applied to Epidemiological Models.
[8]  Pontryagin, L.S. (2018) Mathematical Theory of Optimal Processes. Routledge, Abingdon-on-Thames.
https://doi.org/10.1201/9780203749319
[9]  Leitmann, G. (2013) The Calculus of Variations and Optimal Control: An Introduction. Springer Science & Business Media, Berlin, 24.
[10]  Rao, A.V. (2009) A Survey of Numerical Methods for Optimal Control. Advances in the Astronautical Sciences, 135, 497-528.
[11]  Betts, J.T. (2010) Practical Methods for Optimal Control and Estimation Using Nonlinear Programming. SIAM, University City.
https://doi.org/10.1137/1.9780898718577
[12]  Kermack, W.O. and McKendrick, A.G. (1927) A Contribution to the Mathematical Theory of Epidemics. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, the Royal Society London, 115, 700-721.
https://doi.org/10.1098/rspa.1927.0118
[13]  Gallina, R. (2012) Dynamic Models for the Analysis of Epidemic Spreads Modelli dinamici per l’analisi di diffusioni epidemiche.
[14]  Lenhart, S. and Workman, J.T. (2007) Optimal Control Applied to Biological Models. CRC Press, Boca Raton.
https://doi.org/10.1201/9781420011418
[15]  Chachuat, B. (2007) Nonlinear and Dynamic Optimization: From Theory to Practice.
[16]  Zabczyk, J. (2008) Mathematical Control Theory, Modern Birkhäuser Classics. Birkhäuser Boston Inc., Boston.
[17]  Clarke, F.H. (1990) Optimization and Nonsmooth Analysis. SIAM, University City.
https://doi.org/10.1137/1.9781611971309
[18]  Fleming, W.H., Rishel, R.W., Marchuk, G.I., Balakrishnan, A.V., Borovkov, A.A., Makarov, V.L., Rubinov, A.M., Liptser, R.S., Shiryayev, A.N., Krassovsky, N.N., et al. (1975) Applications of Mathematics. Deterministic and Stochastic Optimal Control. Springer-Verlag, Berlin.
https://doi.org/10.1007/978-1-4612-6380-7
[19]  Kamien, M.I. and Schwartz, N.L. (2012) Dynamic Optimization: The Calculus of Variations and Optimal Control in Economics and Management. Courier Corporation, North Chelmsford.
[20]  Marino, S., Hogue, I.B., Ray, C.J. and Kirschner, D.E. (2008) A Methodology for Performing Global Uncertainty and Sensitivity Analysis in Systems Biology. Journal of Theoretical Biology, 254, 178-196.
https://doi.org/10.1016/j.jtbi.2008.04.011
[21]  Blower, S.M. and Dowlatabadi, H. (1994) Sensitivity and Uncertainty Analysis of Complex Models of Disease Transmission: An HIV Model, as an Example. International Statistical Review, 3, 229-243.
https://doi.org/10.2307/1403510
[22]  Zi, Z.K. (2011) Sensitivity Analysis Approaches Applied to Systems Biology Models. IET Systems Biology, 5, 336-346.
https://doi.org/10.1049/iet-syb.2011.0015
[23]  Azizi, T. and Mugabi, R. (2020) Global Sensitivity Analysis in Physiological Systems. Applied Mathematics, 11, 119-136.
https://doi.org/10.4236/am.2020.113011
[24]  Dalberg, J., Gimenez, H., Keeley, A., Azizi, T., Xi, X. and Jaberi-Douraki, M. (2019) Local and Global Dynamics of Discrete Type 1 Diabetes Model.
[25]  Sobol, I.M. (1993) Sensitivity Estimates for Nonlinear Mathematical Models. Mathematical Modelling and Computational Experiments, 4, 407-414.
[26]  Saltelli, A., Tarantola, S., Campolongo, F. and Ratto, M. (2004) Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models. John Wiley & Sons, Ltd., Hoboken.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413