全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Effects of Alloying Elements on the Stacking Fault Energies of Ni58Cr32Fe10 Alloys: A First-Principle Study

DOI: https://doi.org/10.3390/met9111163

Full-Text   Cite this paper   Add to My Lib

Abstract:

Ni58Cr32Fe10-based alloys, such as Alloy 690 and filler metal 52 (FM-52), suffer from ductility dip cracking (DDC). It is reported that decreasing the stacking fault energy (SFE) of these materials could improve the DDC resistance of Alloy 690. In this work, the effects of alloying elements on the stacking fault energies (SFEs) of Ni58Cr32Fe10 alloys were studied using first-principle calculations. In our simulations, 2 at.% of Ni is replaced by alloy element X (X=Al, Co, Cu, Hf, Mn, Nb, Ta, Ti, V, and W). At a finite temperature, the SFEs were divided into the magnetic entropy (SFEmag) and 0 K (SFE0) contributions. Potentially, the calculated results could be used in the design of high-performance Ni58Cr32Fe10-based alloys or filler materials. View Full-Tex

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133