全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Using Reservoir Geology and Petrographic Observations to Improve CO2 Mineralization Estimates; Examples from the Johansen Formation, North Sea, Norway

DOI: https://doi.org/10.3390/min9110671

Full-Text   Cite this paper   Add to My Lib

Abstract:

Reservoir characterization specific to CO2 storage is challenging due to the dynamic interplay of physical and chemical trapping mechanisms. The mineralization potential for CO2 in a given siliciclastic sandstone aquifer is controlled by the mineralogy, the total reactive surface areas, and the prevailing reservoir conditions. Grain size, morphologies and mineral assemblages vary according to sedimentary facies and diagenetic imprint. The proposed workflow highlights how the input values for reactive mineral surface areas used in geochemical modelling may be parameterized as part of geological reservoir characterization. The key issue is to separate minerals both with respect to phase chemistry and morphology (i.e., grain size, shape, and occurrence), and focus on main reactants for sensitivity studies and total storage potentials. The Johansen Formation is the main reservoir unit in the new full-value chain CO2 capture and storage (CCS) prospect in Norway, which was licenced for the storage of CO2 as of 2019. The simulations show how reaction potentials vary in different sedimentary facies and for different mineral occurrences. Mineralization potentials are higher in fine-grained facies, where plagioclase and chlorite are the main cation donors for carbonatization. Reactivity decreases with higher relative fractions of ooidal clay and lithic fragments. View Full-Tex

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413