|
Integrated Parametric Shaping of Curvilinear Steel Bar Structures of Canopy RoofsDOI: https://doi.org/10.3390/buildings9030072 Abstract: Shaping building objects is conditioned by many interrelated factors, both architectural and structural. Modern tools for shaping structures working in the environment of Rhinoceros 3D such as Grasshopper and Karamba 3D enable algorithmic-aided shaping structures, while allowing the free flow of information between the geometric model and structural model. The aim of the research is to use these tools to test the curvilinear steel bar roofs’ structures shaped based on Catalan surfaces as well as to select the most efficient structure. Three types of roof structures were analyzed: cylindroid shape, conoid shape, and hyperbolic paraboloid shape. In order to find the most preferred structural form, evolutionary structural optimization was carried out, which allowed, among others, to determine optimal discretization of the base surface, as well as optimal positions of supporting columns. As the optimization criterion, the minimum mass of the structure was assumed. The most effective structure turned out to be a structure based on hyperbolic paraboloid supported by multi-branch columns. The use of a roof with the above structure is beneficial not only because of the low weight of the structure compared to the analyzed structures, but also due to the possibility of using flat panels on the roof. View Full-Tex
|