全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

On the Effect of Red Sea and Topography on Rainfall over Saudi Arabia: Case Study

DOI: https://doi.org/10.3390/atmos10110669

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper aimed to investigate the impact of Red Sea topography and water on the development and rainfall of a case of cyclogenesis occurs over Saudi Arabia during the period 16–18 November 2015 using the Weather Research and Forecasting (WRF) model. The WRF Control Run (WRF-CR) experiment was performed with presence of actual topography and surface water of the Red Sea, while the other three sensitivity experiments were carried out without (i) Red Sea Topography (NRST), (ii) Red Sea Water (NRSW), and (iii) Red Sea Topography and Water (NRSTW). The simulated rainfall in the control experiment depicts in well agreement with Tropical Rainfall Measurement Mission (TRMM) rainfall estimates in terms of intensity as well as spatio-temporal distribution. Results demonstrate that rainfall intensity and spatio-temporal distribution significantly changes through each sensitivity experiment compared to the WRF-CR, where the significant variation was found in the NRST experiment. The absence of topography (NRST) leads to formation of strong convergence area over the middle of Red Sea which enhanced uplift motion that further strengthened the low-level jet over Red Sea and the surrounding regions, which enhanced the moisture and temperature gradient and created a conditionally unstable atmosphere that favored the development of the cyclonic system. The absence of Red Sea water (NRSW) changed rainfall spatial distribution and reduced its amount by about 30–40% due to affecting of the dynamics of the upward motion and moisture gradient, suggesting that surface fluxes play an important role in regulating the low-level moist air convergence prior to convection initiation and development

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413