全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Controls on Land Surface Temperature in Deserts of Southern California Derived from MODIS Satellite Time Series Analysis, 2000 to 2018

DOI: https://doi.org/10.3390/cli7020032

Full-Text   Cite this paper   Add to My Lib

Abstract:

The land surface temperature (LST) in arid regions is a primary controller of many ecological processes. Consequently, we have developed a framework for detection of LST change on a regional scale using data sets covering all deserts of southern California from the Moderate-Resolution Imaging Spectroradiometer (MODIS) satellite sensor. The Breaks for Additive Season and Trend (BFAST) methodology was applied to MODIS 1-km monthly LST data from the years 2000 to 2018 to estimate significant time series shifts (breakpoints) and gradual trends. Area-wide results showed five times more positive LST breakpoints (abrupt temperature warming events) than negative (surface cooling) breakpoints. Cross-correlations with high rainfall periods around Mojave dry lake playas, and comparison with timing of wildfire burns for breakpoint patterns, showed that abrupt shifts in LST had the strongest response to these controllers. We detected negative LST (abrupt cooling) breakpoints as consistently associated with the construction of new solar energy facilities. Over the majority of the study area, BFAST results showed warming LST trends between the years 2000 and 2018. The western-most margins of the study area showed consistent widespread warming trends, whereas the eastern portions of the Mojave and Lower Colorado Deserts showed a mix of positive and neutral LST trends. Long-term cooling LST trends were detected only in some of the largest dry lake formations in the Antelope Valley, Death Valley, and Bristol, Cadiz, and Danby playas. View Full-Tex

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413