|
Effects of Predominant Tree Species Mixing on Lignin and Cellulose Degradation during Leaf Litter Decomposition in the Three Gorges Reservoir, ChinaDOI: https://doi.org/10.3390/f10040360 Abstract: The aim of this study was to investigate the potential mixing effects on degradation of lignin and cellulose in mixed leaf litter from Pinus massoniana Lamb., Cupressus funebris Endl., and/or Quercus variabilis Bl., and elucidate the interactions with abiotic factors. The litter bag method was used in the field experiment, and the three predominant species in the Three Gorges Reservoir region were treated as single-, pair-, and tri-species combinations with equal proportions of litter mass. Lignin and cellulose losses in the litter treatments were measured, and the mixing effects were evaluated based on the sampling phase and decomposition period. At the end of the one-year decomposition period, mixing species increased lignin loss by 3.3% for the cypress + oak combination and cellulose loss by 3.9%, 1.8%, and 0.8% for the pine + oak, cypress + oak, and pine + cypress + oak combinations, respectively. The pine + oak and cypress + oak combinations exhibited greater lignin and cellulose loss than the tri-species mixture. Accelerated lignin degradation also apparently occurred in the pine + cypress combination as decomposition proceeded. Generalized linear models suggested that the investigated environmental factors (in terms of average temperature and cumulative precipitation) and changing litter quality (lignin, cellulose, and lignin/cellulose) had significant effects on nonadditive lignin loss, whereas only the changing litter quality factors significantly affected nonadditive cellulose loss. In summary, mixing two or three of the studied species alters cycling of recalcitrant substrates in plantations, and mixed planting with Quercus appears to strengthen both the lignin and cellulose degradation processes. View Full-Tex
|