全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2020 

多元碳纳米材料协同改性玻璃微珠/环氧树脂复合材料
Synergistic modification of glass beads/epoxy composites with multi-carbon nanomaterials

DOI: 10.13801/j.cnki.fhclxb.20190409.001

Keywords: 聚合物基,复合材料,隔离结构,协同作用,导电性能,介电性能
polymer matrix
,composites,segregated structure,synergistic effect,electrical conductivity,dielectric properties

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用静电自组装法制备了还原氧化石墨烯表面修饰中空玻璃微珠(rGO@HGB),与导电炭黑(CB)、石墨烯纳米片(GNPs)一起与环氧树脂(EP)共混,制备了CB-GNPs-rGO@HGB/EP复合材料,并系统研究了复合材料的微观结构、导电性能和介电性能。结果表明,rGO@HGB的加入能够显著提高rGO@HGB/EP复合材料的导电性能和介电常数,进一步引入CB和GNPs后,形成了被rGO@HGB隔离的导电逾渗网络,rGO、CB和GNPs三者对提高CB-GNPs-rGO@HGB/EP复合材料性能具有协同作用。在CB与GNPs的总含量固定为0.2vol%,且二者的体积比为10:1时,CB-GNPs-rGO@HGB/EP复合材料的导电与介电性能最优,对应的体积电阻率为1.88×104 Ωcm,在1 kHz下的介电常数高达454.5,分别比CB-rGO@HGB/EP和GNPs-rGO@HGB/EP复合材料提高了11.3%和10.7%,而其介电损耗仅为0.065。 The surface-modified hollow glass beads with reduced graphene oxide (rGO@HGB) were prepared by electrostatic self-assembly method and then blended with conductive carbon black (CB), graphene nanoplates (GNPs) and epoxy resin (EP), and were further used to prepare CB-GNPs-rGO@HGB/EP composites. The microstructure, conductivity properties and dielectric properties of the CB-GNPs-rGO@HGB/EPcomposites were systematically studied. The results show that rGO@HGB can significantly improve the electrical conductivity and dielectric constant of rGO@HGB/EP composites. After further addition of CB and GNPs, a segregated conductive percolation network is formed by rGO@HGB. There are efficient synergistic effects of rGO, CB and GNPs on improving the properties of CB-GNPs-rGO@HGB/EP composites. With 0.2vol% CB-GNPs at the volume ratio of 10:1, the properties of CB-GNPs-rGO@HGB/EP composites are optimal with the volume resistivity of 1.88×104 Ωcm and the dielectric constant of 454.5 at 1 kHz, which is 11.3% and 10.7% higher than that of CB-rGO@HGB/EP and GNPs-rGO@HGB/EP composites, respectively, while the dielectric loss is only 0.065. 国家自然科学基金(51763006);广西自然科学基金(2016JJA160040);广西科技重大专项(桂科AA18242010-2

References

[1]  TIAN M, MA Q, LI X L, et al. High performance dielectric composites by latex compounding of graphene oxide-encapsulated carbon nanosphere hybrids with XNBR[J]. Journal of Materials Chemistry A, 2014, 2(29):11144-11154.
[2]  GUAN S S, LI H, ZHAO S G, et al. Novel three-component nanocomposites with high dielectric permittivity and low dielectric loss co-filled by carboxyl-functionalized multi-walled nanotube and BaTiO3[J]. Composites Science and Technology, 2018, 158:79-85.
[3]  LIU P, HUANG P, LIU C X, et al. Enhanced electrical conductivity and mechanical stability of flexible pressure-sensitive GNPs/CB/SR composites:Synergistic effects of GNPs and CB[J]. Journal of Materials Research, 2015, 30(22):3394-3402.
[4]  欧文军, 冯锐, 柳扬, 等. 改性石墨烯/聚(偏二氟乙烯-共-六氟丙烯)复合材料薄膜的制备与性能[J]. 复合材料学报, 2018, 35(9):2328-2335.OU W J, FENG R, LIU Y, et al. Preparation and properties of modified graphene/poly(vinylidene fluoride-co-hexafluoropropylene) composite films[J]. Acta Materiae Compositae Sinica, 2018, 35(9):2328-2335(in Chinese).
[5]  DANG Z M, YUAN J K, YAO S H, et al. Flexible nanodielectric materials with high permittivity for power energy storage[J]. Advanced Materials, 2013, 25(44):6334-6365.
[6]  YANG C, HAO S J, DAI S L, et al. Nanocomposites of poly(vinylidene fluoride):Controllable hydroxylated/carboxylated graphene with enhanced dielectric performance for large energy density capacitor[J]. Carbon, 2017, 117:301-312.
[7]  HUNAG M L, TUNNICLIFFE L B, ZHUANG J, et al. Strain-dependent delectric behavior of carbon back reinforced natural rubber[J]. Macromolecules, 2016, 49(6):2339-2347.
[8]  PAL R, JHA A K, AKHTAR M J, et al. Enhanced micro wave processing of epoxy nanocomposites using carbon black powders[J]. Advanced Powder Technology, 2017, 28(4):1281-1290.
[9]  王金龙, 王文一, 史菁元, 等. 多壁碳纳米管/聚偏氟乙烯高介电常数复合材料的制备与性能[J]. 复合材料学报, 2015, 32(5):1355-1360.WANG J L, WANG W Y, SHI J Y, et al. Preparation and properties of multi-walled carbon nanotubes/poly(vinylidene fluoride) high dielectric constant composites[J]. Acta Materiae Compositae Sinica, 2015, 32(5):1355-1360(in Chinese).
[10]  LI H R, CHEN Z Y, LIU L, et al. Poly(vinyl pyrrolidone)-coated graphene/poly(vinylidene fluoride) composite films with high dielectric permittivity and low loss[J]. Composites Science and Technology, 2015, 121:49-55.
[11]  HE F, LAM K H, FAN J T, et al. Improved dielectric properties for chemically functionalized exfoliated graphite nanoplates/syndiotactic polystyrene composites prepared by a solution-blending method[J]. Carbon, 2014, 80:496-503.
[12]  KIM J Y, KIM T Y, SUK J W, et al. Enhanced dielectric performance in polymer composite films with carbon nanotube-reduced graphene oxide hybrid filler[J]. Small, 2014, 10(16):3405-3411.
[13]  KRISHNAMOORTHY K, VEERAPANDIAN M, YUN K, et al. The chemical and structural analysis of graphene oxide with different degrees of oxidation[J]. Carbon, 2013, 53:38-49.
[14]  YANG S H, FENG X L, IVANOVICI S, et al. Fabrication of graphene-encapsulated oxide nanoparticles:Towards high-performance anode materials for lithium storage[J]. Angewandte Chemie International Edition, 2010, 49(45):8408-8411.
[15]  LUO H, WU Z, CHEN C, et al. Methoxypolyethylene glycol functionalized carbon nanotube composites with high permittivity and low dielectric loss[J]. Composites Part A:Applied Science and Manufacturing, 2016, 86:57-65.
[16]  HAMIDINEJAD M, ZHAO B, ZANDIEH A, et al. Enhanced electrical and electromagnetic interference shielding properties of polymer-graphene nanoplatelet composites fabricated via supercritical-fluid treatment and physical foaming[J]. ACS applied materials & interfaces, 2018, 10(36):30752-30761.
[17]  YOUSEF N, SUN X Y, LIN X Y, et al. Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding[J]. Advanced Materials, 2015, 26(31):5480-5487.
[18]  CHEN T, PAN L F, LIN M C, et al. Dielectric, mechanical and electro-stimulus response properties studies of polyurethane dielectric elastomer modified by carbon nanotube-graphene nanosheet hybrid fillers[J]. Polymer Testing, 2015, 47:4-11.
[19]  VALENTINI L, BON S B, LOPEZ-MANCHADO M A, et al. Synergistic effect of graphene nanoplatelets and carbon black in multifunctional EPDM nanocomposites[J]. Composites Science and Technology, 2016, 128:123-130.
[20]  ARJMAND M, SADEGHI S, KHAJEHPOUR M, et al. Carbon nanotube/graphene nanoribbon/polyvinylidene fluoride hybrid nanocomposites:Rheological and dielectric properties[J]. The Journal of Physical Chemistry C, 2017, 121(1):169-181.
[21]  ZHANG X H, LIANG G Z, CHANG J F, et al. The origin of the electric and dielectric behavior of expanded graphite-carbon nanotube/cyanate ester composites with very high dielectric constant and low dielectric loss[J]. Carbon, 2012, 50(14):4995-5007.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413