全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2020 

模拟雷电流作用下单向碳纤维/环氧树脂预浸料的电阻特性
Resistance characteristics of unidirectional carbon fiber/epoxy prepreg subjected to simulated lightning currents

DOI: 10.13801/j.cnki.fhclxb.20190412.001

Keywords: 单向碳纤维,环氧树脂预浸料,直流(DC)电阻,石墨化,模拟雷电流,损伤
unidirectional carbon fiber
,epoxy prepreg,direct current (DC) resistance,graphitization,simulated lightning current,damage

Full-Text   Cite this paper   Add to My Lib

Abstract:

为探究碳纤维/环氧树脂预浸料在雷电流作用下的电阻特性,采用10/350 μs波形的低峰值模拟雷电流对单向碳纤维/环氧树脂预浸料进行模拟雷击试验,并采用四电极法测量试验前后碳纤维/环氧树脂预浸料的直流(DC)电阻,利用SEM和拉曼光谱对雷击前后碳纤维/环氧树脂预浸料微观形态、物相结构进行表征,系统研究了受雷击后单向碳纤维/环氧树脂预浸料的DC电阻变化的原因。结果表明:单向碳纤维/环氧树脂预浸料DC电阻不随雷电流峰值的增加单调变化,而是呈先减小后增大的趋势,这是碳纤维石墨化、环氧树脂绝缘性能劣化、碳纤维断裂、隧道效应等因素综合作用的结果。 In order to investigate the resistance characteristics of unidirectional carbon fiber/epoxy prepreg subjected to lightning currents, low simulated lightning currents of 10/350 μs waveform were applied on the unidirectional carbon fiber/epoxy prepreg. The direct current (DC) resistance data of the unidirectional carbon fiber/epoxy prepreg before and after the tests were measured adopting the four-probe method. The SEM and Raman spectrum were used to characterize the morphology and phase structure of carbon fiber/epoxy prepreg before and after the test. The causes of the DC resistance change were analyzed. The results show that the DC resistance of the carbon fiber/epoxy prepreg does not change monotonously with the increase of lightning current, but tends to decrease first and then increase. This trend is the combined effects of graphitization, epoxy insulation deterioration, fiber fracture and tunnel effect. 国家重点研发计划项目(2017YFC1501506

References

[1]  CHEMARTIN L, LALANDE P, PEYROU B, et al. Direct effects of lightning on aircraft structure:Analysis of the thermal, electrical and mechanical constraints[J]. Aerospace Lab, 2012(5):1-15.
[2]  ZHANG W, SILVA S. Alter the sheet resistance of carbon nanotube-coated cellulose fabric with argon plasma pretreatment[J]. Micro & Nano Letters, 2012, 7(8):850-853.
[3]  TODOROKI A, YOSHIDA J. Electrical resistance change of unidirectional CFRP due to applied load[J]. JSME International Journal, 2004, 47(3):357-364.
[4]  JI X, LI H, DAVID H, et al. I-V characteristics and electro-mechanical response of different carbon black/epoxy composites[J]. Composites Part B:Engineering, 2010, 41(1):25-32.
[5]  刘志强, 岳珠峰, 王富生, 等. 不同防护形式复合材料板雷击损伤分区特性[J]. 复合材料学报, 2015, 32(1):284-294.LIU Z Q, YUE Z F, WANG F S, et al. Damage zoning characteristics of composite laminates with different protections subjected to lightning strike[J]. Acta Materiae Compositae Sinica, 2015, 32(1):284-294(in Chinese).
[6]  LEE J, LACY T E, PITTMAN C U, et al. Thermal response of carbon fiber epoxy laminates with metallic and nonmetallic protection layers to simulated lightning currents[J]. Polymer Composites, 2018, 39(s4):2149-2166.
[7]  SWAIT T J, JONES F R, HAYES S A. A practical structural health monitoring system for carbon fibre reinforced composite based on electrical resistance[J]. Composites Science and Technology, 2012, 72(13):1515-1523.
[8]  ROH H D, LEE H, PARK Y B. Structural health monitoring of carbon-material-reinforced polymers using electrical resistance measurement[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2016, 3(3):311-321.
[9]  李选, 吴旭, 杨斌. 碳纤维纱线及其织物的电阻与温度的关系[J]. 浙江理工大学学报, 2011, 28(6):871-874.LI X, WU X, YANG B. A study on the relationship between resistance and temperature of carbon fiber yarn and its textile structure[J]. Journal of Zhejiang Sci-Tech University, 2011, 28(6):871-874(in Chinese).
[10]  丁海滨, 曾竟成, 彭超义, 等. 碳纤维织物电阻特性研究[J]. 玻璃钢/复合材料, 2014(10):58-61.DING H B, ZENG J C, PENG C Y, et al. Study on the resistance characteristics of carbon fabric[J]. Fiber Reinforced Plastics/Composites, 2014(10):58-61(in Chinese).
[11]  LEON M, KIM B, HELGA P, et al. Materials for wind turbine blades:An overview[J]. Materials, 2017, 10(11):1285-1308.
[12]  杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12.DU S Y. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1):1-12(in Chinese).
[13]  尹俊杰, 李曙林, 姚学玲, 等. 含紧固件复合材料层压板结构雷击烧蚀损伤特征分析[J]. 复合材料学报, 2017, 34(1):104-111.YIN J J, LI S L, YAO X L, et al. Ablation damage characteristic analysis of composite laminate with fastener subjected to lightning strike[J]. Acta Materiae Compositae Sinica, 2017, 34(1):104-111(in Chinese).
[14]  WOLFRUM J, SCHUSTER T J, K?RWIEN T. Effects of heavy lightning strikes on pristine and repaired carbon composite structures[J]. Journal of Composite Materials, 2017, 51(25):3491-3504.
[15]  International Electrotechnical Commission. High-current test techniques:Definitions and requirements for test currents and measuring systems:IEC 62475:2010[S]. Switzerland:International Electrotechnical Commission, 2010.
[16]  WANG F S, JI Y Y, YU X S, et al. Ablation damage assessment of aircraft carbon fiber/epoxy composite and its protection structures suffered from lightning strike[J]. Composite Structures, 2016, 145:226-241.
[17]  付尚琛, 周颖慧, 石立华, 等. 碳纤维增强复合材料雷击损伤实验及电-热耦合仿真[J]. 复合材料学报, 2015, 32(1):250-259.FU S C, ZHOU Y H, SHI L H, et al. Experiment and electrical-thermal coupled simulation for lightning current damage of carbon fiber reinforced plastic[J]. Acta Materiae Compositae Sinica, 2015, 32(1):250-259(in Chinese).
[18]  TODOROKI A. The effect of number of electrodes and diagnostic tool for monitoring the delamination of CFRP laminates by changes in electrical resistance[J]. Composites Science and Technology, 2001, 61(13):1871-1880.
[19]  WANG Y, ALSMEYER D C, MCCREERY R L. Raman spectroscopy of carbon materials:Structural basis of observed spectra[J]. Chemistry of Materials, 1990, 2(5):557-563.
[20]  SADEZKY A, MUCKENHUBER H, GROTHE H, et al. Raman microspectroscopy of soot and related carbonaceous materials:Spectral analysis and structural information[J]. Carbon, 2005, 43(8):1731-1742.
[21]  GUPTA A, DHAKATE S R, PAL P, et al. Effect of graphitization temperature on structure and electrical conductivity of poly-acrylonitrile based carbon fibers[J]. Diamond and Related Materials, 2017, 78:31-38.
[22]  SIMMONS J G. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film[J]. Journal of Applied Physics, 1963, 3(6):1793-1803.
[23]  HU N, KARUBE Y, YAN C, et al. Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor[J]. Acta Materialia, 2008, 56(13):2929-2936.
[24]  PRADERE C, SAUDER C. Transverse and longitudinal coefficient of thermal expansion of carbon fibers at high tem-peratures (300-2500 K)[J]. Carbon, 2008, 46(14):1874-1884.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413