全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

基于高阶剪切理论的复合材料格栅夹层板弯曲特性
Bending characteristic of composite grid sandwich plate based on high-order shear theory

DOI: 10.13801/j.cnki.fhclxb.20190304.002

Keywords: 复合材料,格栅结构,格栅夹层板,高阶剪切理论,弯曲
composites
,grid sandwich structure,grid sandwich plate,high-order shear theory,bending

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于高阶剪切弯曲理论,对含有软质芯材的复合材料格栅夹层板的弯曲特性进行了理论研究。基于能量法,推导了含有软质芯材的复合材料格栅的等效弹性参数计算式;基于高阶剪切弯曲理论,推导了夹层板的弯曲平衡微分方程,并采用Navier方法,给出了分布载荷作用下四边简支、上下表层为对称正交铺层的夹层板弯曲问题的理论解;用算例对典型格栅夹层板的理论解和有限元仿真解进行了对比,两者误差为7.1%,验证了本文理论方法的正确性;并分析了夹层板跨厚比、格栅厚度、格栅复合材料铺层角度、格栅间距等参量对含有软质芯材的典型复合材料格栅夹层板弯曲挠度的影响规律。 Based on the high-order shear theory, the theoretical study on the bending characteristic of composite grid sandwich panels with soft core materials was carried out. Based on the energy method, the calculation formula of the equivalent elastic parameters of composite grid with soft core material was derived. Based on the high-order shear bending theory, the bending differential equilibrium equation of the sandwich plate was derived, and the Navier method was used to give the theoretical solution of the bending of sandwich plate under distributed load with symmetrically laid upper and lower layers and four simple-supported sides. In the example, the theoretical solution of the typical grid sandwich plate was compared with the finite element simulation with the error of 7.1%, which verified the correctness of the theoretical method. The influence of the parameters such as span ratio of the sandwich panel, thickness of the grid, angle of the laminate composite layer and grid spacing on the bending deflection of a typical composite grid sandwich panel containing a soft core material was also analyzed. 国家自然科学基金(51609252

References

[1]  TOTARO G, NICOLA F D. Recent advance on design and manufacturing of composite anisogrid structures for space[J]. Acta Astronautica, 2012, 81(2):570-577.
[2]  LOPATIN A V, MOROZOVB E V, SHATOV A V. Bending of the composite lattice cylindrical shell with the midspan rigid disk loaded by transverse inertia forces[J]. Composite Structures, 2016, 150(15):181-190.
[3]  MOROZOV E V, LOPATINB A V, NESTEROVB V A. Buckling analysis and design of anisogrid composite lattice conical shells[J]. Composite Structures, 2011, 93(12):3150-3162.
[4]  VALERIO G B, PIERLUIGI F, FRANCESCO V. Design, analysis and optimization of anisogrid composite lattice conical shells[J]. Composites Part B:Engineering, 2018, 150(1):184-195.
[5]  YODER M, THOMPSON L, SUMMERS J. Size effects in lattice structures and a comparison to micropolar elasticity[J]. International Journal of Solids and Structures, 2018, 143(15):245-261.
[6]  TOMOHIRO Y, YOSUKE S, MASATO I, et al. Mechanical behavior in compression of skin-added X-lattice composite panel with corrugated ribs[J]. Composite Structures, 2017, 168(15):863-871.
[7]  LI W X, SUN F F, WANG P, et al. A novel carbon fiber reinforced lattice truss sandwich cylinder:Fabrication and experiments[J]. Composites Part A:Applied Science and Manufacturing, 2016, 81(2):313-322.
[8]  FAN H L, MENG F, YANG W. Sandwich panels with Kagome lattice cores reinforced by carbon fibers[J]. Compo-site Structures, 2007, 81(4):533-539.
[9]  FAN H L, YANG L, SUN F F, et al. Compression and bending performances of carbon fiber reinforced lattice-core sandwich composites[J] Composites Part A:Applied Science and Manufacturing, 2013, 52:118-125.
[10]  SHARAF T, FAM A. Numerical modeling of sandwich panels with soft core and different rib configurations[J]. Journal of Reinforced Plastics and Composites, 2012, 31(11):771-784.
[11]  SHARAF T, FAM A. Analysis of large scale cladding sandwich panels composed of GFRP skins and ribs and polyurethane foam core[J]. Thin-Walled Structures, 2013, 71:91-101.
[12]  陆姗姗, 盛美萍, 任杰安. 格栅夹层板抑振性能研究[J]. 动力学与控制学报, 2012, 10(2):157-161.LU Shanshan, SHENG Meiping, REN Jiean. Vibration suppression performance research of sandwich plate with lattice grids[J]. Journal of Dynamics and Control, 2012, 10(2):157-161(in Chinese).
[13]  SHI Shanshan, SUN Zhi, HU Xiaozhi, et al. Flexural strength and energy absorption of carbon-fiber-aluminum-honeycomb composite sandwich reinforced by aluminum grid[J]. Thin-Walled Structures, 2014, 84:416-422.
[14]  刘均, 程远胜. 考虑芯层离散特性的方形蜂窝夹层板自由振动分析[J]. 固体力学学报, 2009, 30(1):90-94.LIU Jun, CHENG Yuansheng. Free vibration analysis of square-honeycomb sandwich plates considering discrete characteristics of the core[J]. Chinese Journal of Solid Mechanics, 2009, 30(1):90-94(in Chinese).
[15]  赖长亮, 刘闯, 王俊彪. 先进复合材料格栅制造工艺研究进展[J]. 机械科学与技术, 2014, 33(12):1925-1930.LAI Changliang, LIU Chuang, WANG Junbiao. On the manufacturing technologies of advanced vomposite grid structure[J]. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(12):1925-1930(in Chinese).
[16]  LUCA B, MASSIMO D, ANTONIO L. Lightweight hemp/bio-epoxy grid structure manufactured by a new continuous process[J]. Composites:Part B:Engineering, 2018, 146(12):165-175.
[17]  TOTARO G. Flexural, torsional, and axial global stiffness properties of anisogrid lattice conical shells in composite material[J]. Composite Structures, 2016, 153(1):738-745.
[18]  SONELL S, ERTAN A, CHRISTOS K. Design, analysis, fabrication, and testing of composite grid-stiffened panels for aircraft structures[J]. Thin-Walled Structures, 2017, 119(1):235-246.
[19]  金晖. 矩形填充多孔材料夹层结构的力学性能等效模型研究[D]. 南京:南京航空航天大学, 2009:11-28.JIN Hui. Research on equivalent models of the mechanical function for sandwich structure with rectangular filled porous materials[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2009:11-28(in Chinese).
[20]  REDDY J N. Mechanics of laminated composite plates and shells:Theory and analysis[M]. New York:CRC Press, 2004:669-720.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413