全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

基于内聚力行为和扩展有限元的砂/树脂复合材料拉伸失效行为的数值计算
Numerical calculation of tensile failure behavior of sand/resin composite model based on extended finite element and cohesive behavior

DOI: 10.13801/j.cnki.fhclxb.20190305.003

Keywords: 砂/树脂,单胞模型,内聚力行为,扩展有限元,粘结桥,断裂过程
sand/resin
,unit-cell model,cohesive behavior,extended finite element,bridge,fracture process

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于砂/树脂断裂与砂树脂界面脱粘失效行为的砂/树脂三维微细观单胞模型被构建,用于研究砂/树脂在拉伸载荷作用下的微观应力特征、树脂粘结桥的损伤破坏模式及微观结构(树脂含量、砂粒粒径、砂粒级配及粘结桥有效横截面积比)对其宏观拉伸强度的影响。该三维微细观单胞模型采用内聚力行为方法刻画粘结砂/树脂界面的失效,采用扩展有限元方法(Extented finite element,XFEM)捕捉树脂基体损伤和裂纹扩展。计算结果表明:所构建的三维微细观单胞模型能够显式刻画砂/树脂微细观结构断裂过程,解释微细观结构断裂机制,能够有效地提供树脂含量、砂粒粒径、砂粒级配、粘结桥有效横截面积比等微细观结构对砂/树脂宏观拉伸强度(St)影响的信息,可为砂/树脂优化设计提供理论指导。 A 3D microscopic unit-cell model of sand/resin was built based on the failure of sand/resin matrix fracture and sand/resin interface debonding. This model was employed to study the microscopic stress characteristics in resin sands, the damage of resin-bonded bridge, and the effect of microstructure (resin content, sand, sand particle size distribution, and the effective cross-sectional area ratio bonding bridge) on the tensile strength of sand/resin. A fracture mode based on energy mechanism i.e., cohesive behavior method was used to describe the debonding of sand/resin interface, and the extended finite element method (XFEM) was used to capture the matrix damage and crack propagation. The numerical results show that the proposed model can explicitly depict the microscopic fracture behavior of sand/resin and explain their fracture mechanisms. The valuable information involving the influence of the resin content, sand size, sand size grading, and the effective cross-sectional area ratio on the tensile strength (St) under the tensile loading is provided. This work can provide theoretical guidance for the resin sand optimization design. 中国博士后科学基金(2018M632933);航空科学基金重点实验室类(20152365002

References

[1]  朱玉龙, 蔡震升. 原砂粒度对树脂砂强度影响的分析[J]. 铸造, 1996(12):35-36.ZHU Yulong, CAI Zhensheng. Analysis on the effect of raw sand size on the strength of resin sand[J]. China Foundry, 1996(12):35-36(in Chinese).
[2]  TVERGAARD V. Analysis of tensile properties for a whisker-reinforced metal-matrix composite[J]. Acta Metallurgica et Materialia, 1990, 38(2):185-194.
[3]  BAO G, HUTCHINSON J W, MCMEEKING R M, Particle reinforcement of ductile matrices against plastic flow and creep[J]. Acta Metallurgica et Materialia Mcmeeking, 1991, 39(8):1871-1882.
[4]  ZHENG Dayong, ZHAO Ying, WANG Gang, et al. Main methods of improving heat resistance of phenolic resin[J]. Heilongjiang Science, 2011, 2(5):33-36.
[5]  ZAMANIAN M, MORTEZAEI M, SALEHNIA B, et al. Fracture toughness of epoxy polymer modified with nanosilica particles:Particle size effect[J]. Engineering Fracture Mechanics, 2013, 97(1):193-206.
[6]  GE Dongbiao. Stude of phenolic resin and form modified by PEG and active polyethers[J]. Fiber Reinforced Plastics/Composite, 2003(6):22-27.
[7]  MINNICINO M A, SANTARE M H. Modeling the progressive damage of the microdroplet test using contact surfaces with cohesive behavior[J]. Composites Science and Technology, 2012, 72(16):2024-2031.
[8]  SHI J X, CHOPP D, LUA J, et al. Abaqus implementation of extended finite element method using a level set representation for three-dimensional fatigue crack growth and life predictions[J]. Engineering Fracture Mechanics, 2010, 77(14):2840-2863.
[9]  黄乃瑜, 游敏, 王文清. 粘结剂添加量对粘接效率的影响[J]. 华中科技大学学报:自然科学版, 1985(S1):51-56.HUANG Naiyu, YOU Min, WANG Wenqing. The influence of bonder addition on bonding efficiency[J]. Journal of Huazhong University of Science & Technology:Nature, 1985(S1):51-56(in Chinese).
[10]  黄乃瑜, 罗吉荣, 叶声平. 树脂砂韧度的研究[J]. 铸造技术. 1992(3):42-45.HUANG Naiyu, LUO Jirong, YE Shengping. Investigation on the toughness of resin bonded sand[J]. Foundry Technology. 1992(3):42-45(in Chinese).
[11]  黄乃瑜, 罗吉荣. 树脂砂芯断裂的新判据[J]. 华中理工大学学报, 1992(S1):1-4.HUANG Naiyu, LUO Jirong. New criterion for fracture of resin sand core[J]. Journal of Huazhong University of Science and Technology, 1992(S1):1-4(in Chinese).
[12]  杨晶, 李欧卿. PEPSET树脂用量和型砂强度关系的数学模型[J]. 铸造, 1997(12):13-16.YANG Jing, LI Ouqing. Mathematical model of relationship between the resin addition levels and tensile strength of moulding sand in PEPSET[J]. China Foundry, 1997(12):13-16(in Chinese).
[13]  游敏, 郑小玲. 原砂粒度对树脂砂强度影响的理论分析[J]. 铸造, 1999(2):40-42.YOU Min, ZHENG Xiaoling. Theoretical analysis of the effect of raw sand size on the strength of resin sand[J]. China Foundry, 1999(2):40-42(in Chinese).
[14]  刘卫东, 曹文. 型砂级配对树脂砂抗拉强度的影响[J]. 铸造, 2012, 61(4):422-424.LIU Weidong, CAO Wen. Effect of molding sand grade on tensile strength of resin sand[J]. China Foundry, 2012, 61(4):422-424(in Chinese).
[15]  LI Yanlei, WU Guohua, LIU Wencai, et al. Effect of reclaimed sand additions on mechanical properties and fracture behavior of furan no-bake resin sand[J]. China Foundry, 2017, 14(2):128-137.
[16]  李传栻. 原砂性状对自硬树脂砂性能的影响[J]. 现代铸铁, 2012, 32(5):63-68.LI Chuanshi. Influence of properties and state of raw sand on properties of self-setting resin sand[J]. Modern Cast Iron, 2012, 32(5):63-68(in Chinese).
[17]  孙颢, 刘国平. 树脂砂原砂粒度对强度的影响[J]. 机车车辆工艺, 1998(3):7-9.SUN Hao, LIU Guoping, The effect of the original sand grain size on the strength of resin sand. Locomotive & Rolling stock technology[J]. Locomotive & Rolling Stock Technology, 1998(3):7-9(in Chinese).
[18]  张永年, 东野英. 弱界面层对树脂砂粘结桥附着力的影响机理研究[J]. 天津大学学报:自然科学与工程技术版, 1987(4):99-106.ZHANG Yongnian, DONG Yeying. The influence of weak boundary layer of the adhesive strength of binding bridge of resin sand[J]. Journal of Tianjin University:Science and Technology, 1987(4):99-106(in Chinese).
[19]  BRUZZI M S, MCHUGH P E, O'ROURKE F, et al. Micromechanical modelling of the static and cyclic loading of an Al 2124-SiC MMC[J]. International Journal of Plasticity, 2001, 17(4):565-599.
[20]  SARAEV D, SCHMAUDER S. Finite element modelling of Al/SiCp metal matrix composites with particles aligned in stripes-A 2D-3D comparison[J]. International Journal of Plasticity, 2003, 19(6):733-747.
[21]  CAO Dongfeng, DUAN Qingfeng, LI Shuxin, et al. Effects of thermal residual stresses and thermal-induced geometrically necessary dislocations on size-dependent strengthening of particle-reinforced MMCs[J]. Composite Structures, 2018, 200:290-297.
[22]  XUE Z, HUANG Y, LI M. Particle size effect in metallic materials:A study by the theory of mechanism-based strain gradient plasticity[J]. Acta Materialia, 2002, 50(1):149-160.
[23]  吴人洁. 现代分析技术:在高聚物中的应用[M]. 上海:上海科学技术出版社, 1987.WU Renjie. Application of modern analytical technology in polymer[M]. Shanghai:Shanghai Scientific & Technical Publishers, 1987(in Chinese).
[24]  金日光, 华幼卿. 高分子物理:第三版[M]. 北京:化学工业出版社, 2007.JIN Riguang, HUA Youqing. Polymer physics:The third edition[M]. Beijing:Chemical Industry Press, 2007(in Chinese).
[25]  黄志雄. 热固性树脂复合材料及其应用[M]. 北京:化学工业出版社, 2007.HUANG Zhixiong. Thermosetting resin composites and their applications[M]. Beijing:Chemical Industry Press, 2007(in Chinese).
[26]  顾晓鲁. 地基及基础:第二版[M]. 北京:中国建筑工业出版社, 1993.GU Xiaolu. Foundation and foundation:2nd edition[M]. Beijing:China Architecture & Building Press, 1993(in Chinese).
[27]  RITTER J E, FOX J R, HUTKO D I, et al. Moisture-assisted crack growth at epoxy-glass interfaces[J]. Journal of Materials Science, 1998, 33(18):4581-4588.
[28]  DOLBOW J, MOS N, BELYTSCHKO T. Extended finite element method for modeling crack growth with frictional contact[J]. Computer Methods in Applied Mechanics & Engineering, 2001, 190(51):6825-6846.
[29]  MOS N, BELYTSCHKO T. Extended finite element method for cohesive crack growth[J]. Engineering Fracture Mechanics, 2002, 69(7):813-833.
[30]  游敏, 黄乃瑜, 曹文龙. 树脂添加量对壳型覆膜砂热性能的影响[J]. 华中科技大学学报:自然科学版. 1989(S2):89-94.YOU Min, HUANG Naiyu, CAO Wenlong. The influence of resin content on the thermal properties of shell mold sand[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 1989(S2):89-94(in Chinese).

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413