全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

基于同步辐射X射线的SiC颗粒/Al复合材料变形损伤
Synchrotron-based study on deformation and damage of SiC particles/Al composites with X-ray imaging

DOI: 10.13801/j.cnki.fhclxb.20190326.004

Keywords: SiCP/Al复合材料,变形损伤,同步辐射,X射线数字图像相关,应变场
SiCP/Al composite
,deformation and damage,synchrotron radiation,X-ray digital image correlation,strain field

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过原位X射线成像系统研究了两种SiC粒径配比(45 μm和(45+100)μm)对70vol% SiC颗粒(SiCP)/Al复合材料变形损伤行为的影响。在准静态压缩加载下,利用X射线数字图像相关方法(XDIC)计算了SiCp/Al复合材料在不同变形阶段的应变场分布。宏观应力-应变曲线表明,因颗粒尺寸引起的SiCp/Al复合材料的强度差异较小,但粒径配比为45 μm的SiCP/Al的延展性明显优于(100+45)μm的SiCP/Al。细观应变场分析表明,粒径配比为(100+45)μm的SiCP/Al比45 μm的SiCP/Al更早出现变形损伤带,且前者在变形后期其应变场不均匀性更高。这是由于(100+45)μm SiCP/Al中更早在大颗粒附近出现应变集中点,而且这些集中点会迅速长大和汇聚进而形成宏观裂纹,导致材料更早失效和破坏。因此,减小颗粒尺寸和促进颗粒均匀分布有利于提高颗粒增强金属基复合材料的延展性。断口回收分析表明:两种颗粒尺寸的SiCP/Al复合材料的断裂模式都属于脆性断裂,且断口中都发现有颗粒破坏和界面脱粘现象存在。 Effect of SiC particle(SiCP) gradation (45 μm and (45+100) μm) on the deformation and damage of 70vol% SiCP/Al composites was studied by an in situ X-ray imaging system. The strain fields of SiCP/Al composites at different deformation stages under quasi-static loading were calculated by the X-ray digital image correlation method (XDIC). The bulk-scale stress-strain curves show that the difference in the yield strength of SiCP/Al composites with different particle gradations is small. But the ductility of 45 μm SiCP/Al is higher than that of (45+100) μm SiCP/Al. Strain field mapping suggests that deformation and damage localizations appear earlier in (45+100) μm SiCP/Al than in 45 μm SiCP/Al, and the strain fields for (45+100) μm SiCP/Al are more heterogeneous in the later deformation stages. The reason is that strain localizations tend to nucleate around big particles which grow and coalesce to form macroscopic cracks, leading to an earlier failure of (100+45) μm SiCP/Al. Hence, optimizing the particle size distribution helps improve the ductility of particle-reinforced metal matrix composites. The postmortem analysis indicates that the fracture modes of the two SiCP/Al composites are both brittle, characterized by particle breakage and interfacial debonding in the fracture plane. 国家重点研发计划(2017YFB0702002);国家自然科学基金(11802252;11627901);国防基础科研科学挑战专题(TZ2018001

References

[1]  MA K, LAVERNIA E J, SCHOENUNG J M. Particulate reinforced aluminum alloy matrix composites:A review on the effect of microconstituents[J]. Reviews on Advanced Materials Science, 2017, 48:91-104.
[2]  GAO X, ZHANG X, GENG L. Strengthening and fracture behaviors in SiCP/Al composites with network particle distribution architecture[J]. Materials Science and Engineering:A, 2019, 740:353-362.
[3]  叶想平, 李英雷, 翁继东, 等. 颗粒增强金属基复合材料的强化机理研究现状[J]. 材料工程, 2018, 46(12):28-37.YE X P, LI Y L, WENG J D, et al. Research status on strengthening mechanism of particle-reinforced metal matrix composites[J]. Journal of Materials Engineering, 2018, 46(12):28-37(in Chinese).
[4]  刘丽娜, 田晓光, 申勤兵. 碳化硅颗粒增强镁铝基复合材料的组织和性能研究[J]. 热加工工艺, 2018, 47(14):104-106.LIU L N, TIAN X G, SHEN Q B. Research on microstructure and performance of SiC particle reinforced Mg-Al matrix composites[J]. Hot Working Technology, 2018, 47(14):104-106(in Chinese).
[5]  XIANG J, PANG S, XIE L, et al. Mechanism-based FE simulation of tool wear in diamond drilling of SiCp/Al composites[J]. Materials, 2018, 11(2):252.
[6]  雷源源, 张晓燕, 李远会, 等. 碳化硅颗粒增强铜基复合材料的组织与性能分析[J]. 热加工工艺, 2015, 44(22):79-81.LEI Y Y, ZHANG X Y, LI Y H, et al. Research on microstructure and properties of SiC particle reinforced copper-based composite[J]. Hot Working Technology, 2015, 44(22):79-81(in Chinese).
[7]  LIU Q, WANG F, WU W, et al. Enhanced mechanical properties of SiC/Al composites at cryogenic temperatures[J]. Ceramics International, 2019, 45(3):4099-4102.
[8]  路通, 王燕, 姚强, 等. 高体积分数SiC颗粒增强铝基复合材料的显微组织与弯曲性能研究[J]. 热加工工艺, 2017, 46(24):158-161.LU T, WANG Y, YAO Q, et al. Research on microstructure and bending properties of high volume fraction SiC particles reinforced aluminum matrix composite[J]. Hot Working Technology, 2017, 46(24):158-161(in Chinese).
[9]  WANG B, QU S, LI X. Preparation and anodizing of SiCp/Al composites with relatively high fraction of SiCp[J]. Scanning, 2018, 2018:1-13.
[10]  ZHANG W, DING D, GAO P. High volume fraction Si particle-reinforced aluminium matrix composites fabricated by a filtration squeeze casting route[J]. Materials & Design, 2016, 90:834-838.
[11]  ZHANG Q, MA X, WU G. Interfacial microstructure of SiCp/Al composite produced by the pressureless infiltration technique[J]. Ceramics International, 2013, 39(5):4893-4897.
[12]  ZHOU L, CUI C, ZHANG P F, et al. Finite element and experimental analysis of machinability during machining of high-volume fraction SiCp/Al composites[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(5-8):1935-1944.
[13]  TAN Z H, PANG B J, QIN D T, et al. The compressive properties of 2024Al matrix composites reinforced with high content SiC particles at various strain rates[J]. Materials Science and Engineering:A, 2008, 489(1-2):302-309.
[14]  卢尚文, 曾莉, 周水波. 高体积分数SiCp/Al复合材料显微组织及力学性能研究[J]. 铸造技术, 2012, 33(11):1265-1266.LU S W, ZENG L, ZHOU S B. Mechanical properties and microstructure of SiCp/Al composites with high volume fraction[J]. Foundry Technology, 2012, 33(11):1265-1266(in Chinese).
[15]  王武杰, 洪雨, 刘家琴, 等. SiC颗粒级配对SiCp/Al复合材料微观结构和性能的影响[J]. 中国有色金属学报, 2018, 28(12):2523-2530.WANG W J, HONG Y, LIU J Q, et al. Effect of SiC grain gradation on microstructure and performance of SiCp/Al composite[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(12):2523-2530(in Chinese).
[16]  路建宁, 王娟, 郑开宏, 等. 高体积分数SiCp/A356复合材料的显微组织和电导率[J]. 材料导报, 2018, 32(S1):257-260.LU J N, WANG J, ZHENG K H, et al. Microstructure and electrical conductivity of SiCp/A356 composites with high SiC volume fraction[J]. Materials Review, 2018, 32(S1):257-260(in Chinese).
[17]  MAZZOLI A, FAVONI O. Particle size, size distribution and morphological evaluation of airborne dust particles of diverse woods by scanning electron microscopy and image processing program[J]. Powder Technology, 2012, 225:65-71.
[18]  石文超. SiCp/Al复合材料的高压扭转制备及组织性能研究[D]. 合肥:合肥工业大学, 2013.SHI W C. High pressure torsion preparation and microstructure properties of SiCp/Al composites[D]. Heifei:HeFei University of Technology, 2013(in Chinese).
[19]  许明, 刘先珊. 颗粒摩擦因数对胶结砂岩力学特性的影响[J]. 中南大学学报(自然科学版), 2014, 45(1):299-305.XU M, LIU X S. Effect of particle friction factor on mechanical properties of cemented sandstone[J]. Journal of Central South University(Science and Technology), 2014, 45(1):299-305(in Chinese).
[20]  李建运. 多粒径SiC颗粒增强铝基复合材料的力学性能数值模拟[D]. 南昌:华东交通大学, 2012. LI J Y. Numerical simulation of mechanical properties of multi-particle SiC particle reinforced aluminum matrix composites[D]. Nanchang:East China Jiaotong University, 2012(in Chinese).
[21]  晏义伍. 颗粒尺寸对SiCp/Al复合材料性能的影响规律及其数值模拟[D]. 哈尔滨:哈尔滨工业大学, 2007.YAN Y W. Effect of particle size on properties of SiCp/Al composites and its numerical simulation[D]. Harbin:Harbin Institute of Technology, 2007(in Chinese).
[22]  曹东风. 细观特征对SiCp/Al复合材料力学行为影响的实验及数值研究[D]. 武汉:武汉理工大学, 2011.CAO D F. Experimental and numerical study on the effect of microscopic characteristics on mechanical behavior of SiCp/Al composites[D]. Wuhan:Wuhan University of Technology, 2011(in Chinese).
[23]  曾莉, 王小俐, 崔岩, 等. 高温压缩对高体份SiCp/Al复合材料组织的影响[J]. 航空材料学报, 2010, 30(3):32-37.ZENG L, WANG X L, CUI Y, et al. Effect of hot compression on microstructure of SiCp/Al composites with high volume fraction[J]. Journal of Aeronautical Materials, 2010, 30(3):32-37(in Chinese).
[24]  HILD F, ROUX S. Digital image correlation[M]. Weinheim:Wiley-VCH, 2012.
[25]  罗胜年, 宋广军, 范端, 等. 一种基于X射线透射成像的数字图像相关技术实验装置:ZL 201710840630.3[P]. 2017-09-18.LUO S N, SONG G J, FAN D, et al. Digital image correlation technology experimental device based on X-ray transmission imaging:ZL 201710840630.3[P]. 2017-09-18(in Chinese).
[26]  PAN B. Recent progress in digital image correlation[J]. Experimental Mechanics, 2011, 51(7):1223-1235.
[27]  LU L, FAN D, BIE B X, et al. Note:Dynamic strain field mapping with synchrotron X-ray digital image correlation[J]. Review of Scientific Instruments, 2014, 85(7):076101.
[28]  MOMOSE A. Recent advances in X-ray phase imaging[J]. Japanese Journal of Applied Physics, 2005, 44(9R):6355.
[29]  WU S Y, BIE B X, FAN D, et al. Dynamic shear localization of a titanium alloy under high-rate tension characterized by x-ray digital image correlation[J]. Materials Characterization, 2018, 137:58-66.
[30]  PRABHU T R, VARMA V K, VEDANTAM S. Effect of SiC volume fraction and size on dry sliding wear of Fe/SiC/graphite hybrid composites for high sliding speed applications[J]. Wear, 2014, 309(1-2):1-10.
[31]  HUDSPETH M, CLAUS B, DUBELMAN S, et al. High speed synchrotron X-ray phase contrast imaging of dynamic material response to split Hopkinson bar loading[J]. Review of Scientific Instruments, 2013, 84(2):025102.
[32]  FAN D, LU L, LI B, et al. Transient x-ray diffraction with simultaneous imaging under high strain-rate loading[J]. Review of Scientific Instruments, 2014, 85(11):113902.
[33]  PAN B, LU Z, XIE H. Mean intensity gradient:An effective global parameter for quality assessment of the speckle patterns used in digital image correlation[J]. Optics and Lasers in Engineering, 2010, 48(4):469-477.
[34]  BIE B X, HUANG J Y, SU B, et al. Dynamic tensile deformation and damage of B 4 C-reinforced Al composites:Time-resolved imaging with synchrotron X-rays[J]. Materials Science and Engineering:A, 2016, 664:86-93.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413