全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

六韧带手性蜂窝材料韧带的冲击动荷系数及稳定性分析
Impact dynamic load coefficient and stability analysis of ligament of hexachiral honeycomb

DOI: 10.13801/j.cnki.fhclxb.20180818.001

Keywords: 六韧带手性蜂窝,冲击,变形机制,动荷系数,稳定性
hexachiral honeycomb
,impact,deformation mechanism,dynamic load coefficient,stability

Full-Text   Cite this paper   Add to My Lib

Abstract:

手性蜂窝材料内部韧带的变形及失稳特性控制了该类材料的抗冲击性能。本文运用能量法和泛函数极值分析的方法,分别探讨了六韧带手性蜂窝材料在受到面内冲击时缓冲第一阶段中韧带的冲击动荷系数及韧带失稳坍塌临界压力,得到了韧带的动荷系数及其失稳临界压力的解析表达式,进而揭示手性蜂窝材料抗冲击性能的内部微结构溃塌机制和关键影响因素。结果表明:视为扭簧的韧带节点环在冲击压缩变形过程中扭转角越大,韧带的动荷系数越小,而韧带的失稳临界压力随着节点环扭转角的增大而增加。研究方法和结果可为手性蜂窝材料及其它蜂窝型材料抗冲击能力的进一步研究和微结构设计提供理论参考。 The deformation and instability characteristics of ligaments in chiral honeycomb control the impact resistance of these materials. In this paper, the impact dynamic load coefficient of ligament and the critical pressure of ligament instability in the first stage of in-plane shock buffering were discussed by means of energy method and extremum analysis of functional exponential function, then the analytical expression of the dynamic load coefficient and the critical pressure instability were obtained, and then the internal micro-structural collapse mechanism and the key influencing factors of impact resistance of the chiral honeycomb material were revealed. The results show that the larger the torsion angle of the ligament node ring, which is regarded as the torsion spring, during impact compression deformation, the smaller the dynamic load coefficient of the ligament, while the pressure of instability of the ligament increases with the torsion angle of the node ring. The research methods and results can provide reference for the further research and microstructure design of the impact resistance of chiral honeycomb materials and similar honeycomb materials. 国家自然科学基金(10972056);福建省自然科学基金(2016 J01001);福建农林大学科技发展基金(KF2015026;KF2015027

References

[1]  BITZER T N. Honeycomb technology[M]. Chapman & Hall, 1997.
[2]  QIAO J X, CHEN C Q. In-plane crushing of hierarchical honeycomb[J]. International Journal of Solids and Structures, 2016, 85-86:57-66.
[3]  PRALL D, LAKES R S. Properties of a chiral honeycomb with a Poisson's ratio of -1[J]. International Journal of Mechanical and Science, 1996, 39(3):305-314.
[4]  ALDERSON A, ALDERSON K L, ATTATD D, et al. Elastic constants of 3-, 4- and 6- connected chiral anti-chiral honeycombs subject to uniaxial in-plane loading[J]. Composites Science and Technology, 2010, 70(7):1042-1048.
[5]  EBRAHIMI H, GHOSH R, MAHDI E, et al. Honeycomb sandwich panels subjected to combined shock and projectile impact[J]. International Journal of Impact Engineering, 2016, 95:1-11.
[6]  冯贤桂. 一般冲击动荷系数的能量法推导[J]. 力学与实践, 2000, 22(1):60-61. FENG X G. Derivation of the general impact load coefficient by energy method[J]. Mechanics in Engineering, 2000, 22(1):60-61(in Chinese).
[7]  苏继龙. 韧带结构对手性超材料弹性波传播带隙的影响[J]. 功能材料, 2015, 46(22):22090-22094. SU J L. Effect of ligament structure on the elastic wave propagation band gap in chiral metamaterials[J]. Journal of Functional Materials, 2015, 46(22):22090-22094(in Chinese).
[8]  赵显伟. 可变性蜂窝结构的力学性能分析[D]. 哈尔滨:哈尔滨工业大学, 2013. ZHAO X W. The analysis of mechani-cal properties of morphing honeycomb structures[D]. Harbin:Harbin Institute of Technology, 2013(in Chinese).
[9]  PRAWOTO Y. Seeing auxetic materials from the mechanics point of view:A structural review on the negative Poisson's ratio[J]. Computational Materials Science, 2012, 58:140-153.
[10]  CHEN Y Y, LI T T, JIA Z, et al. 3D printed hierarchical honeycombs with shape integrity under large compressive deformations[J]. Materials and Design, 2018, 137:226-234.
[11]  卢子兴, 刘强, 杨振宇. 拉胀泡沫材料力学性能[J]. 宇航材料工艺, 2010, 41(1):7-13. LU Z X, LIU Q, YANG Z Y. Mechanical properties of auxetic foams[J]. Aerospace Materials and Technology, 2010, 41(1):7-13(in Chinese).
[12]  苏继龙. 夹杂及弹性耦联对手性蜂窝复合材料吸振带隙的影响[J]. 复合材料学报, 2015, 32(5):1517-1526. SU J L. Influence of inclusion and elastic coupling on vibration absorbing band gap of chiral honeycomb composites[J]. Acta Materiae Compositae Sinica, 2015, 32(5):1517-1526(in Chinese).
[13]  HASSAN M R, SCARPA F, RUZZENE M, et al. Smart shape memory alloy chiral honeycomb[J]. Materials Science and Engineering A, 2008, 481-482:654-657.
[14]  李萌, 刘荣强, 罗昌杰, 等. 铝蜂窝串联缓冲结构静态压缩仿真与试验研究[J]. 振动与冲击, 2013, 32(9):50-56. LI M, LIU R Q, LUO C J, et al. Numerical and experimental analyses on series aluminum honeycomb structures under quasi-static load[J]. Journal of Vibration and Shock, 2013, 32(9):50-56(in Chinese).
[15]  卢子兴, 李康. 负泊松比蜂窝动态压溃行为的有限元模拟[J]. 机械强度, 2016, 38(6):1237-1242. LU Z X, LI K. Dynamic crushing of honeycombs with a negative Poisson's ratio[J]. Journal of Mechanical Strength, 2016, 38(6):1237-1242(in Chinese).
[16]  张新春, 祝晓燕, 李娜. 六韧带手性蜂窝材料的动力学响应特性研究[J]. 振动与冲击, 2016, 35(8):1-7. ZHANG X C, ZHU X Y, LI N. A study of dynamic response characteristics of hexagonal chiral honeycombs[J]. Journal of Vibration and Shock, 2016, 35(8):1-7(in Chinese).
[17]  QIAO J X, CHEN C Q. Impact resistance of uniform and functionally graded auxetic double arrowhead honeycombs[J]. International Joural of Impact Engineering, 2015, 83:47-58.
[18]  SCARP F, BLAIN S, LEW T, et al. Elastic buckling of hexagonal chiral cell honeycombs[J]. Composites Part A:Applied Science and Manufacturing, 2007, 38(2):280-289.
[19]  李楠, 韩志军, 路国运. 基于里兹法研究复合材料层合板的运动屈曲问题[J]. 振动与冲击, 2016, 35(10):180-184. LI N, HAN Z J, LU G Y. Dynamic buckling analysis of laminated composite plates by using Ritz method[J]. Journal of Vibration and Shock, 2016, 35(10):180-184(in Chinese).
[20]  彭兴黔. 两端弹性铰支约束下压杆稳定的优化设计[J]. 华侨大学学报, 2002, 23(1):45-49. PENG X Q. Optimal design of the stability of compression bar under the constraint of elastically hinged support at both ends[J]. Journal of Huaqiao University, 2002, 23(1):45-49(in Chinese).

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413