全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

齿板-玻璃纤维/聚氨酯泡沫芯夹层梁的低速冲击性能
Low-velocity impact behavior of tooth plate glass fiber/polyurethane foam core sandwich beams

DOI: 10.13801/j.cnki.fhclxb.20180612.001

Keywords: 低速冲击,混合夹层梁,接触力,泡沫密度,界面性能
low-velocity impact
,hybrid sandwich beams,contact force,foam density,interfacial properties

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出了一种由齿板-玻璃纤维(TP-GF)混合面板和聚氨酯(PU)泡沫芯材组成的新型TP-GF/PU泡沫夹层梁,结构中金属板通过齿钉压入GF与内部芯材连接,该夹层梁采用真空导入模压工艺制作。通过低速冲击试验,研究了不同冲击能量、纤维厚度和泡沫密度下TP-GF/PU泡沫夹层梁的冲击响应和损伤模式,并与普通的夹层梁进行了对比分析;通过双悬臂梁试验研究了混合夹层梁的界面性能,计算了夹层梁的应变能释放率。结果表明:在22 J、33 J、44 J能量冲击下,泡沫芯材密度为150 kg/m3的TP-GF/PU泡沫夹层梁的最大接触力较普通夹层梁分别提高了31.2%、48.6%、33.3%,冲击能量吸收分别增加了17.2%、11.3%、15.5%;随着冲击能量、面板纤维层数及芯材密度的增加,TP-GF/PU泡沫夹层梁最大接触力增大,密度较低的TP-GF/PU泡沫夹层梁损伤形式主要为面板的局部弯曲,而芯材密度较高的TP-GF/PU泡沫夹层梁则以穿透损伤为主;增加泡沫芯材密度和面板纤维厚度能够提高TP-GF/PU泡沫夹层梁的抗冲击性能,随着芯材密度的增大TP-GF/PU泡沫夹层梁的应变能释放率峰值越高,界面性能越好。 A new family of tooth plate-glass fiber/polyurethane (TP-GF/PU) foam core sandwich beams consisted of TP-GF facesheets and a PU foam core were studied, in which tooth plates were connected with foam core through tooth nails. TP-GF/PU foam core sandwich beams were fabricated by a vacuum-assisted resin infusion process. The aim of this article is to investigate the impact response and impact damage of TP-GF/PU foam core sandwich beams with various foam densities and fiber thickness under low velocity impact tests. Double cantilever tests were also conducted to investigate the interfacial properties of TP-GF/PU foam core sandwich beams. An analytical model was used to calculate the strain energy release rate of TP-GF/PU foam core sandwich beams. The test results show that, under the energy impact of 22 J, 33 J and 44 J, the maximum contact force of the sandwich beam with a density of 150 kg/m3 is 31.2%, 48.6% and 33.3% higher than that of the ordinary sandwich beams, respectively. The absorbed energy is 17.2%, 11.3%, 15.5% higher than that of the ordinary sandwich beams, respectively. The maximum contact force increased with the increase of foam core density and impact energy. The main damage modes for TP-GF/PU with low foam density are face sheet bending. The strain energy release rate of TP-GF/PU specimen increase with the increase of the foam density. 国家自然科学基金青年基金(51208251);江苏省高校自然科学基金重大项目(15KJA580002);国家自然科学基金重点项目(51238003

References

[1]  HOLLAWAY L. A review of the present and future utilization of FRP composites in the civil infrastructure with reference to their important in-service properties[J]. Construction and Building Materials, 2010, 24(12):2419-2445.
[2]  叶列平, 冯鹏. FRP在工程结构中的应用与发展[J]. 土木工程学报, 2006, 39(3):24-36. YE L P, FENG P. Application and development of fiber-reinforced polymer in engineering structures[J]. China Civil Engineering Journal, 2006, 39(3):24-36(in Chinese).
[3]  段友社, 郭书良, 吴刚, 等. Z向增强泡沫夹芯复合材料冲击损伤及冲击后压缩性能[J]. 复合材料学报, 2012, 29(2):180-185. DUAN Y S, GUO S L, WU G, et al. Impact damage characteristics and post-impact compressive properties of Z-reinforcement foam core sandwich composites[J]. Acta Materiae Compositae Sinica, 2012, 29(2):180-185(in Chinese).
[4]  MARASCO A I. Analysis and evaluation of mechanical performance of reinforced sandwich structures:X-Cor and K-Cor[D]. London:Cranfield University, 2005.
[5]  VOGELESANG L B. Development of fibre metal laminates for advanced aerospace structures[J]. Journal of Materials Processing Technology, 2000, 103(1):1-5.
[6]  KOTIK H G, PEREZ-IPINA J E. Short-beam shear fatigue behavior of fiber metal laminate (Glare)[J]. International Journal of Fatigue, 2017, 95:236-242.
[7]  GHALAMI-CHOOBAR M, SADIGHI M. Investigation of high velocity impact of cylindrical projectile on sandwich panels with fiber-metal laminates skins and polyurethane core[J]. Aerospace Science and Technology, 2014, 32(1):142-52.
[8]  郑晓霞, 郑锡涛, 屈天骄, 等. 缝纫泡沫芯夹层结构低速冲击损伤分析[J]. 西北工业大学学报, 2010, 28(5):774-779. ZHENG X X, ZHENG X T, QU T J, et al. Exploring damage characteristics of stitched foam core sandwich structure under low-velocity impact[J]. Journal of North Western Polytechnical University, 2010, 28(5):774-779(in Chinese).
[9]  张广成, 何祯, 刘良威, 等. 夹层结构复合材料低速冲击试验与分析[J]. 复合材料学报, 2012, 29(4):170-177. ZHANG G C, HE Z, LIU L W, et al. Low-velocity impact experiment and analysis of sandwich structure composites[J]. Acta Materiae Compositae Sinica, 2012, 29(4):170-177(in Chinese).
[10]  赵金华, 曹海琳, 晏义伍, 等. 泡沫铝夹层结构复合材料低速冲击性能[J]. 复合材料学报, 2018, 46(1):92-98. ZHAO J H, CAO H L, YAN Y W, et al. Low velocity impact properties of aluminum foam sandwich structural composite[J]. Acta Materiae Compositae Sinica, 2018, 46(1):92-98(in Chinese).
[11]  杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):12. DU S Y. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1):12(in Chinese).
[12]  马玉娥, 胡海威, 熊晓枫. 低速冲击下FMLs、铝板和复合材料的损伤对比[J]. 航空学报, 2014, 35(7):1902-1911. MA Y E, HU H W, XIONG X F. Comparison of damage in FMLs, aluminium and composite panels subjected to low-velocity impact[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7):1902-1911(in Chinese).
[13]  SANTHANAKRISHNAN R, STANLEY D, SANJEEVIRAJA T, et al. Effective design analysis of fixture development for stitching a sandwich panel in an aerospace application[J]. Applied Mechanics and Materials, 2014, 592-594:1055-1059.
[14]  方海, 刘伟庆, 万里. 格构增强型复合材料夹层结构的制备与受力性能[J]. 玻璃钢/复合材料, 2009(4):999-1003. FANG H, LIU W Q, WAN L. Preparation and mechanical properties of lattice reinforced composite sandwich structures[J]. Fiber Reinforced Plastics/Composites, 2009(4):999-1003(in Chinese).
[15]  BAUMERT E K, JOHNSON W S, CANO R J, et al. Fatigue damage development in new fibre metal laminates made by the VARTM process[J]. Fatigue & Fracture of Engineering Materials & Structures, 2015, 34(4):240-249.
[16]  REYES V G, CANTWELL W J. The high velocity impact response of composite and FML-reinforced sandwich structures[J]. Composites Science and Technology, 2004, 64(1):35-54.
[17]  TAN C, AKIL H M. Impact response of fiber metal laminate sandwich composite structure with polypropylene honeycomb core[J]. Composites Part B:Engineering, 2012, 43(3):1433-1438.
[18]  宁宝军, 于哲峰, 叶文勋, 等. 基于非接触位移测量的层压板低速冲击性能分析[J]. 复合材料学报, 2016, 33(7):1564-1573. NING B J, YU Z F, YE W X, et al. Performance analyses of laminates subjected to low velocity impact based on non-contact measurement displacement[J]. Acta Materiae Compositae Sinica, 2016, 33(7):1564-1573.
[19]  李诗哲, 陈艳, 伊鹏跃, 等. 复合材料翼盒壁板低速冲击接触力、凹坑特性及其模拟[J]. 复合材料学报, 2016, 33(1):204-212. LI S Z, CHEN Y, YI P Y, et al. Contact force and indentation characteristics due to low velocity impact of composite wing-box panel and their simulations[J]. Acta Materiae Compositae Sinica, 2016, 33(1):204-212(in Chinese).
[20]  ASTM International. Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event:ASTM D7136M-15[S]. West Conshohocken:ASTM International, 2015.
[21]  ASTM International. Standard test method for mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites:ASTM D5528-13[S]. West Conshohocken:ASTM International, 2013.
[22]  GATES T, SU X, ABDI F, et al. Facesheet delamination of composite sandwich materials at cryogenic temperatures[J]. Composites Science and Technology, 2006, 66(14):2423-2435.
[23]  李川苏, 万里, 刘伟庆, 等. 齿板-玻璃纤维混合夹层结构弯曲性能试验[J]. 复合材料学报, 2017, 34(12):2874-2881. LI C S, WAN L, LIU W Q, et al. Experimental study on flexural performance of tooth-plate-glass-fiber hybrid sandwich beams[J]. Acta Materiae Compositae Sinica, 2017, 34(12):2874-2881(in Chinese).

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413