全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2020 

基于正弦剪切变形理论的功能梯度材料三明治微梁的静动态特性
Static and dynamic properties of functionally graded materials sandwich microbeams based on sinusoidal shear deformation theory

DOI: 10.13801/j.cnki.fhclxb.20190511.001

Keywords: 功能梯度材料,三明治微尺度梁,正弦剪切变形理论,修正的偶应力理论,尺度效应
functionally graded materials
,sandwich microbeams,sinusoidal shear deformation theory,modified couple stress theory,size effect

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于修正的偶应力理论和正弦剪切变形梁理论,研究了功能梯度材料三明治微梁的静态弯曲和自由振动行为。考虑两种不同类型的功能梯度材料三明治微梁,根据哈密顿变分原理建立其静动态力学行为的控制方程,应用Navier解法,得到了简支边界条件下弯曲变形和振动频率的解析解,同时,给出了固支等边界条件时的里兹法求解过程。数值算例表明,功能梯度三明治微梁的静动态力学行为具有明显的尺度效应,微梁的无量纲厚度、功能梯度指数、长厚比和结构形式等因素对其静动态响应有很大影响,相关结果和规律对功能梯度材料三明治微梁的结构设计和性能优化等实际工程应用具有一定的指导意义。 The static bending and free vibration of functionally graded (FG) sandwich microbeams were investigated based on the modified couple stress theory (MCST) and the sinusoidal shear deformation theory. The two types of FG sandwich microbeams were taken into consideration. Governing equations were derived by using the Hamilton' principle. Analytical solutions of bending and vibration with simply supported boundary condition were obtained in the basis of the Navier's solution procedure. The results with general boundary conditions were obtained by using the Ritz method. The numerical results demonstrate that the static and dynamic behavior of FG sandwich microbeams is size-dependent and affected by the microbeam's nondimensional thickness, FG index, the ratio of length to thickness and the structure type. This study may be helpful for the design and performance optimization of the FG sandwich structures. 重庆市教育委员会科学技术研究计划青年项目(KJQN201803802);国家自然科学基金(11802101

References

[1]  LEI J, HE Y, GUO S, et al. Size-dependent vibration of nickel cantilever microbeams:Experiment and gradient elasticity[J]. AIP Advances, 2016, 6(10):105202.
[2]  陈淑萍, 赵红晓, 耿少波, 等. 功能梯度材料Timoshenko型剪切梁的自由振动分析[J]. 材料科学与工程学报, 2018, 36(1):112-116. CHEN S P, ZHAO H X, GENG S B, et al. Free vibration analysis of functionally graded Timoshenko shear beam[J]. Journal of Materials Science and Engineering, 2018, 36(1):112-116(in Chinese).
[3]  杨子豪, 贺丹. 考虑尺度依赖的平面正交各向异性功能梯度微梁的自由振动分析[J]. 复合材料学报, 2017, 34(10):2375-2384. YANG Z H, HE D. Size-dependent free vibration analysis of plane orthotropic functionally graded micro-beams[J]. Acta Materiae Compositae Sinica, 2017, 34(10):2375-2384(in Chinese).
[4]  NEJAD M Z, HADI A, RASTGOO A. Buckling analysis of arbitrary two-directional functionally graded Euler-Bernoulli nano-beams based on nonlocal elasticity theory[J]. International Journal of Engineering Science, 2016, 103:1-10.
[5]  KE L L, YANG J, KITIPORNCHAI S, et al. Axisymmetric postbuckling analysis of size-dependent functionally graded annular microplates using the physical neutral plane[J]. International Journal of Engineering Science, 2014, 81:66-81.
[6]  ERINGEN A C, EDELEN D. On nonlocal elasticity[J]. International Journal of Engineering Science, 1972, 10(3):233-248.
[7]  项松, 陈英涛. 功能梯度梁弯曲分析的无网格解[J]. 力学与实践, 2014, 36(6):770-773. XIANG S, CHEN Y T. The meshless solution for bending analysis of functionally graded beams[J]. Mechanics in Engineering, 2014, 36(6):770-773(in Chinese).
[8]  FLECK N A, MULLER G M, ASHBY M F, et al. Strain gradient plasticity:Theory and experiment[J]. Acta Metallurgica et Materialia, 1994, 42(2):475-487.
[9]  LAM D C C, YANG F, CHONG A C M, et al. Experiments and theory in strain gradient elasticity[J]. Journal of the Mechanics and Physics of Solids, 2003, 51(8):1477-1508.
[10]  LIEBOLD C, MüLLER W H. Comparison of gradient elasticity models for the bending of micromaterials[J]. Computational Materials Science, 2016, 116:52-61.
[11]  YANG F, CHONG A C M, LAM D C C, et al. Couple stress based strain gradient theory for elasticity[J]. International Journal of Solids and Structures, 2002, 39(10):2731-2743.
[12]  Lü C, LIM C W, CHEN W. Size-dependent elastic behavior of FGM ultra-thin films based on generalized refined theory[J]. International Journal of Solids and Structures, 2009, 46(5):1176-1185.
[13]  SHAAT M, MAHMOUD F, ALIELDIN S, et al. Finite element analysis of functionally graded nano-scale films[J]. Finite Elements in Analysis and Design, 2013, 74:41-52.
[14]  张亚萍, 穆瑞. 基于单一场变量等参元法的功能梯度材料三明治板的静态响应分析[J]. 连云港职业技术学院学报, 2016, 29(3):12-18. ZHANG Y P, MU R. Static response analysis of sandwich panels with functionally graded materials based on single field variable and other parameter[J]. Journal of Lianyungang Technical College, 2016, 29(3):12-18(in Chinese).
[15]  KONG S, ZHOU S, NIE Z, et al. The size-dependent natural frequency of Bernoulli-Euler micro-beams[J]. International Journal of Engineering Science, 2008, 46(5):427-437.
[16]  KE L L, WANG Y S. Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory[J]. Composite Structures, 2011, 93(2):342-350.
[17]  贺丹, 乔瑞, 杨子豪. 碳纳米管增强型功能梯度板的屈曲预测[J]. 复合材料学报, 2018, 35(10):2804-2812. HE D, QIAO R, YANG Z H. Buckling analysis of carbon nanotube-reinforced functionally graded composite plates[J]. Acta Materiae Compositae Sinica, 2018, 35(10):2804-2812(in Chinese).
[18]  苏盛开, 黄怀纬. 多孔功能梯度梁的热-力耦合屈曲行为[J]. 复合材料学报, 2017, 34(12):2794-2799. SU S K, HUANG H W. Thermal-mechanical coupling buckling analysis of porous functionally graded beams[J]. Acta Materiae Compositae Sinica, 2017, 34(12):2794-2799(in Chinese).
[19]  EBRAHIMI F, BARATI M R. A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams[J]. Composite Structures, 2017, 159:174-182.
[20]  GHANNADPOUR S A M. Ritz method application to bending, buckling and vibration analyses of Timoshenko beams via nonlocal elasticity[J]. Journal of Applied and Computational Mechanics, 2018, 4(1):16-26.
[21]  AL-BASYOUNI K S, TOUNSI A, MAHMOUD S R. Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position[J]. Composite Structures, 2015, 125:621-630.
[22]  TOURATIER M. An efficient standard plate theory[J]. International Journal of Engineering Science, 1991, 29(8):901-916.
[23]  LEI J, HE Y, ZHANG B, et al. Bending and vibration of functionally graded sinusoidal microbeams based on the strain gradient elasticity theory[J]. International Journal of Engineering Science, 2013, 72:36-52.
[24]  ?IM?EK M, REDDY J. Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory[J]. International Journal of Engineering Science, 2013, 64:37-53.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413