全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2020 

全湿热场下碳纤维/环氧树脂复合材料弯曲性能及寿命预测
Flexural properties and life-time estimation of carbon fiber/epoxy composite under hygrothermal conditions

DOI: 10.13801/j.cnki.fhclxb.20190517.002

Keywords: 碳纤维,环氧树脂,复合材料,湿热老化,弯曲性能,剩余强度,寿命预测
carbon fiber
,epoxy,composite,hygrothermal effect,flexural properties,residual strength,life-time estimation

Full-Text   Cite this paper   Add to My Lib

Abstract:

以碳纤维/环氧树脂(T700/TR1219B)复合材料为研究对象,采用湿度场和温度场单一及耦合的方式,研究了不同湿热环境下其弯曲性能的变化,通过断口形貌和表面粗糙度表征,分析其湿热损伤机制。结果表明:T700/TR1219B复合材料的弯曲性能受湿度场和温度场影响明显,当吸湿率达到2%时,弯曲强度从干态的1 440.60 MPa下降到1 081.07 MPa;随温度的升高弯曲性能呈下降趋势,且在玻璃化转变温度Tg所在温度区间发生陡降,当环境温度为180℃时,弯曲模量和弯曲强度分别下降了71.18%和93.32%;高温高湿环境下弯曲性能陡降的温度区间前移,且性能衰减并非单一湿度场和温度场下衰减量的简单叠加。通过微观形貌分析发现,湿度场主要导致树脂水解脱黏,温度场下树脂形态破坏严重,而湿热耦合场对纤维与树脂均产生较大程度的损伤。考虑湿度场和温度及湿热耦合相关项,建立并验证了全湿热场下剩余弯曲强度模型,结合湿热老化时间、环境当量等参数提出T700/TR1219B复合材料的寿命预测模型。 The flexural properties of carbon fiber/epoxy (T700/TR1219B) composite were investigated under different hygrothermal conditions, including single moisture, temperature and coupled moisture-temperature conditions. Combined with fracture morphology and surface roughness, the degradation mechanism was analyzed. The experimental results show that the flexural properties decrease significantly under hygrothermal conditions. With the moisture absorption rate of 2%, the flexural strength decreases sharply from 1 440.60 MPa to 1 081.07 MPa due to the interfacial debonding caused by water absorption. The flexural properties decrease with temperature increasing and exhibit a steep fall in the range of glass transition temperature Tg. The flexural modulus and flexural strength decrease by 71.18% and 93.32% at 180℃, respectively, caused by resin degradation under high temperature. The coupled moisture-temperature condition results in the steep fall of properties at lower temperature range. The residual strength model is established and verified concerning the effects of hygrothermal conditions. The life-time estimation of T700/TR1219B composite is realized by introducing the aging time and environmental equivalence. 国家自然科学基金(51402356);中央高校基本科研业务费中国民航大学专项资金(3122017112

References

[1]  马立敏, 张嘉振, 岳广全, 等. 复合材料在新一代大型民用飞机中的应用[J]. 复合材料学报, 2015, 32(2):317-322.MA L M, ZHANG J Z, YUE G Q, et al. Application of composites in new generation of large civil aircraft[J]. Acta Materiae Compositae Sinica, 2015, 32(2):317-322(in Chinese).
[2]  WANG H G, XIAN G J, LI H, et al. Durability study of a ramie-fiber reinforced phenolic composite subjected to water immersion[J]. Fibers and Polymers, 2014, 15(5):1029-1036.
[3]  KHAN L A, MAHMOOD A H, SYED A S, et al. Effect of hygrothermal conditioning on the fracture toughness of carbon/epoxy composites cured in autoclave/quickstep[J]. Journal of Reinforced Plastics and Composites, 2013, 32(16):1165-1176.
[4]  LI H, WANG Y G, LIANG X U, et al. Moisture absorption model of composites considering water temperature effect[J]. Journal of Materials Engineering, 2016, 44(11):83-87.
[5]  张晓云, 曹东, 陆峰, 等. T700/5224复合材料在湿热环境和化学介质中的老化行为[J]. 材料工程, 2016, 44(4):82-88.ZHANG X Y, CAO D, LU F, et al. Aging behavior of T700/5224 composite in hygrothermal environment and chemical media[J]. Journal of Materials Engineering, 2016, 44(4):82-88(in Chinese).
[6]  GOGLIO L, REZAEI M. Variation in mechanical properties of an epoxy adhesive on exposure to warm moisture[J]. Journal of Adhesion Science and Technology, 2014, 28(14-15):1394-1404.
[7]  HWANG T K, PARK J B, KIM H G. Temperature effect on the flexural deformation and strength of carbon fiber-reinforced plastic laminate[J]. Journal of Reinforced Plastics & Composites, 2012, 31(17):1158-1169.
[8]  马少华, 王勇刚, 回丽, 等. 湿热环境对碳纤维环氧树脂复合材料弯曲性能的影响[J]. 材料工程, 2016, 44(2):81-87.MA S H, WANG Y G, HUI L, et al. Influence of hygrothermal environment on flexural property of carbon fiber epoxy composite[J]. Journal of Materials Engineering, 2016, 44(2):81-87(in Chinese).
[9]  闫伟, 燕瑛, 苏玲. 湿热力耦合环境下复合材料结构损伤分析与性能研究[J]. 复合材料学报, 2010, 27(2):113-116. YAN W, YAN Y, SU L. Damage analysis and strength prediction of composites structures in hygrothermal environment[J]. Acta Materiae Compositae Sinica, 2010, 27(2):113-116(in Chinese).
[10]  MLYNIEC A, KORTA J, KUDELSKI R, et al. The influence of the laminate thickness, stacking sequence and thermal aging on the static and dynamic behavior of carbon/epoxy composites[J]. Composite Structures, 2014, 118:208-216.
[11]  BELEC L, NGUYEN T H, NGUYEN D L, et al. Comparative effects of humid tropical weathering and artificial ageing on a model composite properties from nano to macro-scale[J]. Composites Part A:Applied Science & Manufacturing, 2015, 68:235-241.
[12]  SHABAN B I, ZHAO Y. Hydrothermal ageing modeling and numerical testing of unidirectional polymeric composites[J]. Advanced Materials Research, 2014, 989-994:634-637.
[13]  International Organization for Standardization. Fiber-reinforced plastic composites:Determination of flexural properties:ISO 14125:1998[S]. Switzerland:International Organization for Standardization, 1998.
[14]  牛一凡, 杨赢, 孟积兴. 基于峰值力纳米力学模量成像技术的碳纤维/树脂复合材料界面尺寸与性能的原位表征[J]. 复合材料学报, 2017, 34(3):501-507.NIU Y F, YANG Y, MENG J X. In situ characterization on dimension and properties of the interphase in carbon fiber reinforced polymer composites by peak force quantitative nano-mechanics technique[J]. Acta Materiae Compositae Sinica, 2017, 34(3):501-507(in Chinese).
[15]  KAFODYA I, XIAN G, LI H. Durability study of pultruded CFRP plates immersed in water and seawater under sustained bending:Water uptake and effects on the mechanical properties[J]. Composites Part B:Engineering. 2015, 70:138-148.
[16]  张代军, 刘刚, 包建文, 等. T700碳纤维增强环氧树脂基复合材料自然老化性能与机制[J]. 复合材料学报, 2016, 33(7):1390-1399.ZHANG D J, LIU G, BAO J W, et al. Environment aging performance and mechanism of T700 carbon fiber reinforced epoxy resin matrix composites[J]. Acta Materiae Compositae Sinica, 2016, 33(7):1390-1399(in Chinese).
[17]  颜芳芳. 复合材料性能的分散性与安全系数[D]. 南京:南京航空航天大学, 2009.YAN F F. Performance of composite material dispersion and safety coefficient[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2009(in Chinese).
[18]  宋健, 温卫东. 不同温度下树脂基复合材料层合板力学性能试验[J]. 航空动力学报, 2016, 31(4):1006-1018.SONG J, WEN W D. Experiment on mechanical properties of resin matrix composites laminates under various temperatures[J]. Journal of Aerospace Power, 2016, 31(4):1006-1018(in Chinese).
[19]  ALMEIDA J H S, SOUZA S D B, BOTELHO E C, et al. Carbon fiber-reinforced epoxy filament-wound composite laminates exposed to hygrothermal conditioning[J]. Journal of Materials Science, 2016, 51(9):4697-4708.
[20]  ASTM International. Standard test method for moisture absorption properties and equilibrium conditioning of polymer matrix composite materials:ASTM D5229M-92(2010)[S]. West Conshohocken:ASTM International, 2010.
[21]  张菡英, 刘明. 碳纤维复合材料的发展及应用[J]. 工程塑料应用, 2015, 43(11):132-135.ZHANG H Y, LIU M. Development and applications of carbon fiber reinforced polymer[J]. Engineering Plastics Applications, 2015, 43(11):132-135(in Chinese).
[22]  高雪玉, 杨庆生, 刘志远, 等. 基于纳米压痕技术的碳纤维/环氧树脂复合材料各组分原位力学性能测试[J]. 复合材料学报, 2012, 29(5):209-214.GAO X Y, YANG Q S, LIU Z Y, et al. In situ characterization of carbon fiber/epoxy composites by nanoindentation[J]. Acta Materiae Compositae Sinica, 2012, 29(5):209-214(in Chinese).

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413