全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Interaction between Pesticide Use and Genetic Variants Involved in Lipid Metabolism on Prostate Cancer Risk

DOI: 10.1155/2012/358076

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. Lipid metabolism processes have been implicated in prostate carcinogenesis. Since several pesticides are lipophilic or are metabolized via lipid-related mechanisms, they may interact with variants of genes in the lipid metabolism pathway. Methods. In a nested case-control study of 776 cases and 1444 controls from the Agricultural Health Study (AHS), a prospective cohort study of pesticide applicators, we examined the interactions between 39 pesticides (none, low, and high exposure) and 220 single nucleotide polymorphisms (SNPs) in 59 genes. The false discovery rate (FDR) was used to account for multiple comparisons. Results. We found 17 interactions that displayed a significant monotonic increase in prostate cancer risk with pesticide exposure in one genotype and no significant association in the other genotype. The most noteworthy association was for ALOXE3 rs3027208 and terbufos, such that men carrying the T allele who were low users had an OR of 1.86 (95% CI = 1.16–2.99) and high users an OR of 2.00 (95% CI = 1.28–3.15) compared to those with no use of terbufos, while men carrying the CC genotype did not exhibit a significant association. Conclusion. Genetic variation in lipid metabolism genes may modify pesticide associations with prostate cancer; however our results require replication. 1. Background Previous studies of prostate cancer have shown elevated rates in agricultural and pesticide manufacturing populations [1, 2]. In the Agricultural Health Study (AHS), a significant excess of prostate cancer was observed among private and commercial pesticide applicators compared to the general population [3, 4]. Also, use of pesticides, such as phorate [5], fonofos [6], butylate [7], and coumaphos [8], has been linked with an increased risk of prostate cancer among AHS participants with a family history of prostate cancer. We conducted a prostate cancer nested case-control study within the AHS to examine interactions between prespecified genetic pathways and pesticide exposure. Recent findings from this study have identified significant pesticide interactions for several genetic variants in the 8q24 region [9], xenobiotic metabolism pathway [10], and DNA repair pathways [11, 12]. These studies help elucidate exposure-effect associations by identifying potentially susceptible subgroups. This allows us to better understand potential carcinogenic hazards and furthers public health research on the human health effects of pesticides. In this analysis, we evaluated single nucleotide polymorphisms (SNPs) in genes related to lipid metabolism since

References

[1]  G. Van Maele-Fabry and J. L. Willems, “Prostate cancer among pesticide applicators: a meta-analysis,” International Archives of Occupational and Environmental Health, vol. 77, no. 8, pp. 559–570, 2004.
[2]  G. Van Maele-Fabry, V. Libotte, J. Willems, and D. Lison, “Review and meta-analysis of risk estimates for prostate cancer in pesticide manufacturing workers,” Cancer Causes and Control, vol. 17, no. 4, pp. 353–373, 2006.
[3]  M. C. R. Alavanja, C. Samanic, M. Dosemeci et al., “Use of agricultural pesticides and prostate cancer risk in the agricultural health study cohort,” American Journal of Epidemiology, vol. 157, no. 9, pp. 800–814, 2003.
[4]  S. Koutros, M. C. R. Alavanja, J. H. Lubin et al., “An update of cancer incidence in the agricultural health study,” Journal of Occupational and Environmental Medicine, vol. 52, no. 11, pp. 1098–1105, 2010.
[5]  R. Mahajan, M. R. Bonner, J. A. Hoppin, and M. C. R. Alavanja, “Phorate exposure and incidence of cancer in the agricultural health study,” Environmental Health Perspectives, vol. 114, no. 8, pp. 1205–1209, 2006.
[6]  R. Mahajan, A. Blair, C. F. Lynch et al., “Fonofos exposure and cancer incidence in the Agricultural Health Study,” Environmental Health Perspectives, vol. 114, no. 12, pp. 1838–1842, 2006.
[7]  S. M. Lynch, R. Mahajan, L. E. Beane Freeman, J. A. Hoppin, and M. C. R. Alavanja, “Cancer incidence among pesticide applicators exposed to butylate in the Agricultural Health Study (AHS),” Environmental Research, vol. 109, no. 7, pp. 860–868, 2009.
[8]  C. H. Christensen, E. A. Platz, G. Andreotti et al., “Coumaphos exposure and incident cancer among male participants in the Agricultural Health Study (AHS),” Environmental Health Perspectives, vol. 118, no. 1, pp. 92–96, 2010.
[9]  S. Koutros, L. E. Beane Freeman, S. I. Berndt et al., “Pesticide use modifies the association between genetic variants on chromosome 8q24 and prostate cancer,” Cancer Research, vol. 70, no. 22, pp. 9224–9233, 2010.
[10]  S. Koutros, G. Andreotti, S. I. Berndt et al., “Xenobiotic-metabolizing gene variants, pesticide use, and the risk of prostate cancer,” Pharmacogenetics and Genomics, vol. 21, no. 10, pp. 615–623, 2011.
[11]  K. H. Barry, S. Koutros, S. I. Berndt et al., “Genetic variation in base excision repair pathway genes, pesticide exposure, and prostate cancer risk,” Environmental Health Perspectives, vol. 119, no. 12, pp. 1726–1732, 2011.
[12]  K. H. Barry, S. Koutros, G. Andreotti et al., “Genetic variation in nucleotide excision repair pathway genes, pesticide exposure and prostate cancer risk,” Carcinogenesis, vol. 33, no. 2, pp. 331–337, 2012.
[13]  D. I. Feig, L. C. Sowers, and L. A. Loeb, “Reverse chemical mutagenesis: Identification of the mutagenic lesions resulting from reactive oxygen species-mediated damage to DNA,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 14, pp. 6609–6613, 1994.
[14]  L. Wuermli, M. Joerger, S. Henz et al., “Hypertriglyceridemia as a possible risk factor for prostate cancer,” Prostate Cancer and Prostatic Diseases, vol. 8, no. 4, pp. 316–320, 2005.
[15]  J. V. Swinnen, T. Roskams, S. Joniau et al., “Overexpression of fatty acid synthase is an early and common event in the development of prostate cancer,” International Journal of Cancer, vol. 98, no. 1, pp. 19–22, 2002.
[16]  J. V. Swinnen, H. Heemers, T. Van De Sande et al., “Androgens, lipogenesis and prostate cancer,” Journal of Steroid Biochemistry and Molecular Biology, vol. 92, no. 4, pp. 273–279, 2004.
[17]  R. W. Mahley and S. C. Rall, “Apolipoprotein E: far more than a lipid transport protein,” Annual Review of Genomics and Human Genetics, vol. 1, no. 2000, pp. 507–537, 2000.
[18]  H. Knoblauch, A. Bauerfeind, M. R. Toliat et al., “Haplotypes and SNPs in 13 lipid-relevant genes explain most of the genetic variance in high-density lipoprotein and low-density lipoprotein cholesterol,” Human Molecular Genetics, vol. 13, no. 10, pp. 993–1004, 2004.
[19]  S. Lehrer, “Possible relationship of the apolipoprotein E (ApoE) ε4 allele to prostate cancer,” British Journal of Cancer, vol. 78, no. 10, p. 1398, 1998.
[20]  S. L. Zheng, B. L. Chang, D. A. Faith et al., “Sequence variants of α-methylacyl-CoA racemase are associated with prostate cancer risk,” Cancer Research, vol. 62, no. 22, pp. 6485–6488, 2002.
[21]  S. E. Daugherty, Y. Y. Shugart, E. A. Platz et al., “Polymorphic variants in α-methylacyl-CoA racemase and prostate cancer,” Prostate, vol. 67, no. 14, pp. 1487–1497, 2007.
[22]  F. Matsumura, “Mechanism of action of dioxin-type chemicals, pesticides, and other xenobiotics affecting nutritional indexes,” American Journal of Clinical Nutrition, vol. 61, no. 3, pp. 695S–701S, 1995.
[23]  G. B. Quistad, S. N. Liang, K. J. Fisher, D. K. Nomura, and J. E. Casida, “Each lipase has a unique sensitivity profile for organophosphorus inhibitors,” Toxicological Sciences, vol. 91, no. 1, pp. 166–172, 2006.
[24]  M. C. R. Alavanja, D. P. Sandler, S. B. McMaster et al., “The agricultural health study,” Environmental Health Perspectives, vol. 104, no. 4, pp. 362–369, 1996.
[25]  J. Coble, K. W. Thomas, C. J. Hines et al., “An updated algorithm for estimation of pesticide exposure intensity in the agricultural health study,” International Journal of Environmental Research and Public Health, vol. 8, no. 12, pp. 4608–4622, 2011.
[26]  C. S. Carlson, M. A. Eberle, M. J. Rieder, Q. Yi, L. Kruglyak, and D. A. Nickerson, “Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium,” American Journal of Human Genetics, vol. 74, no. 1, pp. 106–120, 2004.
[27]  S. Purcell, B. Neale, K. Todd-Brown et al., “PLINK: a tool set for whole-genome association and population-based linkage analyses,” American Journal of Human Genetics, vol. 81, no. 3, pp. 559–575, 2007.
[28]  J. C. Barrett, B. Fry, J. Maller, and M. J. Daly, “Haploview: analysis and visualization of LD and haplotype maps,” Bioinformatics, vol. 21, no. 2, pp. 263–265, 2005.
[29]  C. E. Murcray, J. P. Lewinger, and W. J. Gauderman, “Gene-environment interaction in genome-wide association studies,” American Journal of Epidemiology, vol. 169, no. 2, pp. 219–226, 2009.
[30]  Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: a practical and powerful approach to multiple testing,” Journal of the Royal Statistical Society B, vol. 57, no. 1, pp. 289–300, 1995.
[31]  N. S. Weiss, “Subgroup-specific associations in the face of overall null results: should we rush in or fear to tread?” Cancer Epidemiology Biomarkers and Prevention, vol. 17, no. 6, pp. 1297–1299, 2008.
[32]  M. R. Bonner, B. A. Williams, J. A. Rusiecki et al., “Occupational exposure to terbufos and the incidence of cancer in the agricultural health study,” Cancer Causes and Control, vol. 21, no. 6, pp. 871–877, 2010.
[33]  D. M. van Bemmel, K. Visvanathan, L. E. Beane Freeman, J. Coble, J. A. Hoppin, and M. C. R. Alavanja, “S-ethyl-N,N-dipropylthiocarbamate exposure and cancer incidence among male pesticide applicators in the agricultural health study: a prospective cohort,” Environmental Health Perspectives, vol. 116, no. 11, pp. 1541–1546, 2008.
[34]  J. A. Rusiecki, A. De Roos, W. J. Lee et al., “Cancer incidence among pesticide applicators exposed to Atrazine in the agricultural health study,” Journal of the National Cancer Institute, vol. 96, no. 18, pp. 1375–1382, 2004.
[35]  L. E. Beane Freeman, J. A. Rusiecki, J. A. Hoppin et al., “Atrazine and cancer incidence among pesticide applicators in the Agricultural Health Study (1994–2007),” Environmental Health Perspectives, vol. 119, no. 9, pp. 1253–1259, 2011.
[36]  A. J. De Roos, A. Blair, J. A. Rusiecki et al., “Cancer incidence among glyphosate-exposed pesticide applicators in the Agricultural Health Study,” Environmental Health Perspectives, vol. 113, no. 1, pp. 49–54, 2005.
[37]  International Agency for Research on Cancer, “Occupational exposures in insecticide application, and some pesticides,” IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, vol. 53, pp. 5–586, 1991.
[38]  A. M. Soto, C. Sonnenschein, K. L. Chung, M. F. Fernandez, N. Olea, and F. Olea Serrano, “The E-SCREEN assay as a tool to identify estrogens: an update on estrogenic environmental pollutants,” Environmental Health Perspectives, vol. 103, no. 7, pp. 113–122, 1995.
[39]  H. D. Peters, P. Selhorst, V. Dinmendahl, K. U. Helm, and P. S. Sch?nh?fer, “Effect of paraoxon and antidotes on lipolysis of isolated fat cells,” Archives of Toxicology, vol. 30, no. 2, pp. 139–145, 1973.
[40]  J. P. Buchet, H. Roels, and R. Lauwerys, “Further characterization of mono and diglyceride lipases in rat tissues,” Life Sciences, vol. 14, no. 2, pp. 371–385, 1974.
[41]  J. W. Baynes and M. G. Dominiczak, Medical Biochemistry, Elsvier Mosby, 2nd edition, 2005.
[42]  T. Yamauchi, J. Kamon, Y. Ito et al., “Cloning of adiponectin receptors that mediate antidiabetic metabolic effects,” Nature, vol. 423, no. 6941, pp. 762–769, 2003.
[43]  I. Dunham, N. Shimizu, B. A. Roe et al., “The DNA sequence of human chromosome 22,” Nature, vol. 402, no. 6761, pp. 489–495, 1999.
[44]  G. Schmitz, T. Langmann, and S. Heimerl, “Role of ABCG1 and other ABCG family members in lipid metabolism,” Journal of Lipid Research, vol. 42, no. 10, pp. 1513–1520, 2001.
[45]  A. Kamboj, R. Kiran, and R. Sandhir, “N-Acetylcysteine ameliorates carbofuraninduced alterations in lipid composition and activity of membrane bound enzymes,” Molecular and Cellular Biochemistry, vol. 286, no. 1-2, pp. 107–114, 2006.
[46]  J. J. Keusch, S. M. Manzella, K. A. Nyame, R. D. Cummings, and J. U. Baenziger, “Cloning of GB3 synthase, the key enzyme in globo-series glycosphingolipid synthesis, predicts a family of α1,4-glycosyltransferases conserved in plants, insects, and mammals,” Journal of Biological Chemistry, vol. 275, no. 33, pp. 25315–25321, 2000.
[47]  ICI Americas Inc., Materials Safety Data Sheet for Eptam Technical, ICI, 1992.
[48]  F. M. Ashton and T. J. Monaco, Weed Science, John Wiley and Sons, New York, NY, USA, 3rd edition, 1991.
[49]  J. H. Dwyer, H. Allayee, K. M. Dwyer et al., “Arachidonate 5-lipoxygenase promoter genotype, dietary arachidonic acid, and atherosclerosis,” New England Journal of Medicine, vol. 350, no. 1, pp. 29–37, 2004.
[50]  J. Herz and D. Y. Hui, “Lipoprotein receptors in the vascular wall,” Current Opinion in Lipidology, vol. 15, no. 2, pp. 175–181, 2004.
[51]  E. Soupene and F. A. Kuypers, “Mammalian long-chain acyl-CoA synthetases,” Experimental Biology and Medicine, vol. 233, no. 5, pp. 507–521, 2008.
[52]  P. A. MacLennan, E. Delzell, N. Sathiakumar et al., “Cancer incidence among triazine herbicide manufacturing workers,” Journal of Occupational and Environmental Medicine, vol. 44, no. 11, pp. 1048–1058, 2002.
[53]  J. L. Goldstein, R. A. DeBose-Boyd, and M. S. Brown, “Protein sensors for membrane sterols,” Cell, vol. 124, no. 1, pp. 35–46, 2006.
[54]  L.A. Hindorff, J. MacArthur, A. Wise, et al., “A Catalog of Published Genome-Wide Association Studies,” http://www.genome.gov/gwastudies/.
[55]  E. A. Platz and E. Giovannucci, Prostate Cancer in Cancer Epidemiology and Prevention, D. Schottenfeld and J. F. Fraumeni, Eds., Oxford University Press, Oxford, UK, 3rd edition, 2006.
[56]  M. Hughes-Fulford, C. F. Li, J. Boonyaratanakornkit, and S. Sayyah, “Arachidonic acid activates phosphatidylinositol 3-kinase signaling and induces gene expression in prostate cancer,” Cancer Research, vol. 66, no. 3, pp. 1427–1433, 2006.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133