全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Use of Zinc Oxide Nanoparticles in Eva to Obtain Food Packing Films

DOI: 10.4236/anp.2020.93005, PP. 59-80

Keywords: Food Packaging, Ethylene Vinyl Acetate Copolymer, Antimicrobial, ZnO

Full-Text   Cite this paper   Add to My Lib

Abstract:

The increasing demand for new packages with increased shelf life properties has stimulated the increase of research in the active packaging sector. The use of antimicrobial agents requires an in-depth study of their properties to avoid loss of efficiency of the polymer processing. In this context, the objective of this work was to evaluate the preparation of an 18% ethylene vinyl acetate copolymer (EVA) nanocomposite and zinc oxide (ZnO) as microbicidal nanoparticle, prepared in a monosulfon extruder. The nanoparticle was modified with octadecylamine and EVA 18 nanocomposite films were prepared and compared to the systems containing modified nanoparticle. These new materials were characterized by thermogravimetric analysis (TGA), Differential Scanning Calorimetry (DSC), X-Ray Diffraction (XRD), Dynamic Mechanical Analysis (DMA), Time Domain Nuclear Magnetic Resonance (NMR) to investigate the effect of zinc oxide nanoparticles on thermal properties, EVA crystallinity and antimicrobial effect. The TGA showed a tendency of increase of the thermal stability in different proportions of ZnO. DSC results did not show significant changes in thermal parameters. The XRD analysis showed an increase in the degree of crystallinity of the nanocomposites in relation to the EVA matrix and change in the crystallinity with the increase of ZnO percentages. DMA analysis indicates change in structural organization through the variation of storage modulus, loss, and tan delta. Time domain NMR data corroborate with XRD data through the change in molecular mobility.

References

[1]  Omrani, A., Simon, B.L.C. and Rostami, A.A. (2009) The Effects of Alumina Nanoparticle on the Properties of an Epoxy Resin System Materials. Materials Chemistry and Physics, 114, 145-150.
https://doi.org/10.1016/j.matchemphys.2008.08.090
[2]  Emamifar, A. (2011) Applications of Antimicrobial Polymer Nanocomposites in Food Packaging. In: Hashim, A., Ed., Advances in Nanocomposite Technology, IntechOpen, London.
https://doi.org/10.5772/18343
[3]  Biji, K.B., Ravishankar, C.N. and Mohan, C.O. (2015) Smart Packaging Systems for Food Applications: A Review. Journal of Food Science and Technology, 52, 6125-6135.
https://doi.org/10.1007/s13197-015-1766-7
[4]  Hotchkiss, J.H. and Appendini, P. (2002) Review of Antimicrobial Food Packaging. Innovative Food Science and Emerging Technologies, 3, 113-126.
https://doi.org/10.1016/S1466-8564(02)00012-7
[5]  Espitia, P.J.P., Soaresa, N.F.F., Teófilo, R.F., Coimbra, J.S.R., Vitora, D.M., Batista, R.A., Ferreira, S.O., Andrade, N.J. and Medeiros, E.A.A. (2013) Physical-Mechanical and Antimicrobial Properties of Nanocomposite Films with Pediocin and ZnO Nanoparticles. Carbohydrate Polymers, 94, 199-208.
https://doi.org/10.1016/j.carbpol.2013.01.003
[6]  Bastarrachea, L., Dhawan, S. and Sablani, S.S. (2011) Engineering Properties of Polymeric-Based Antimicrobial Films for Food Packaging: A Review. Food Engineering Review, 3, 79-93.
https://doi.org/10.1007/s12393-011-9034-8
[7]  Merah, A., Abidi, A., Merad, H., Gherraf, N., Iezid, M. and Djahoudi, A. (2019) Comparative Study of the Bacteriological Activity of Zinc Oxide and Copper Oxide Nanoparticles. Acta Scientiarum Naturalium, 6, 63-72.
https://doi.org/10.2478/asn-2019-0009
[8]  Jones, N., Ray, B., Ranjit, K.T. and Manna, A.C. (2008) Antibacterial Activity of ZnO Nanoparticle Suspensions on a Broad Spectrum of Microorganisms. FEMS Microbiology Letters, 279, 71-76.
https://doi.org/10.1111/j.1574-6968.2007.01012.x
[9]  Akbar, A., Sadiq, M.B., Ali, I., Muhammad, N., Rehman, Z., Khan, M.N., Muhammad, J., Khan, S.A., Rehman, F.U. and Anal, A.K. (2019) Synthesis and Antimicrobial Activity of Zinc Oxide Nanoparticles against Foodborne Pathogens Salmonella typhimurium and Staphylococcus aureus. Biocatalysis and Agricultural Biotechnology, 17, 36-42.
https://doi.org/10.1016/j.bcab.2018.11.005
[10]  Seil, J.T. and Webster, T.J. (2012) Antimicrobial Applications of Nanotechnology: Methods and Literature. International Journal of Nanomedicine, 7, 2767-2781.
https://doi.org/10.2147/IJN.S24805
[11]  Emami-Karvani, Z. and Chehrazi, P. (2011) Antibacterial Activity of ZnO Nanoparticle on Gram-Positive and Gram-Negative Bacteria. African Journal of Microbiology Research, 5, 1368-1373.
https://doi.org/10.5897/AJMR10.159
[12]  Dumbrava, A., Berger, D., Matei, C., Prodan, G., Aonofriesei, F., Radu, M.D. and Moscalu, F. (2019) New Composite Nanomaterials with Antimicrobial and Photocatalytic Properties Based on Silver and Zinc Oxide. Journal of Inorganic and Organometallic Polymers and Materials, 29, 2072-2082.
https://doi.org/10.1007/s10904-019-01166-4
[13]  Raghupathi, K.R., Koodali, R.T. and Manna, A.C. (2011) Size-Dependent Bacterial Growth Inhibition and Mechanism of Antibacterial Activity of Zinc Oxide Nanoparticles. Langmuir, 27, 4020-4028.
https://doi.org/10.1021/la104825u
[14]  Adams, L.K., Lyon, D.Y. and Alvarez, P.J.J. (2006) Comparative Eco-Toxicity of Nanoscale TiO2, SiO2, and ZnO Water Suspensions. Water Research, 40, 3527-3532.
https://doi.org/10.1016/j.watres.2006.08.004
[15]  Bhadra, P., Mitra, M.K., Das, G.C., Dey, R. and Mukherjee, S. (2011) Interaction of Chitosan Capped ZnO Nanorods with Escherichia coli. Materials Science and Engineering C, 31, 929-937.
https://doi.org/10.1016/j.msec.2011.02.015
[16]  Brayner, R., Ferrari-Iliou, R., Brivois, N., Djediat, S., Benedetti, M.F. and Fiévet, F. (2006) Toxicological Impact Studies Based on Escherichia coli Bacteria in Ultrafine ZnO Nanoparticles Colloidal Medium. Nano Letters, 6, 866-870.
https://doi.org/10.1021/nl052326h
[17]  Gordon, T., Perlstein, B., Houbara, O., Felner, I., Banin, E. and Margel, S. (2011) Synthesis and Characterization of Zinc/Iron Oxide Composite Nanoparticles and Their Antibacterial Properties. Colloids and Surfaces A, 374, 1-8.
https://doi.org/10.1016/j.colsurfa.2010.10.015
[18]  Hirota, K., Sugimoto, M., Kato, M., Tsukagoshi, K., Tanigawa, T. and Sugimoto, H. (2010) Preparation of Zinc Oxide Ceramics with a Sustainable Antibacterial Activity under Dark Conditions. Ceramics International, 36, 497-506.
https://doi.org/10.1016/j.ceramint.2009.09.026
[19]  da Silva, B.L., Abuçafy, M.P., Manaia, E.B., Junior, J.A.O., Chiari-Andréo, B.G., Pietro, R.C.R. and Chiavacci, L.A. (2019) Relationship between Structure and Antimicrobial Activity of Zinc Oxide Nanoparticles: An Overview. International Journal of Nanomedicine, 14, 9395-9410.
https://doi.org/10.2147/IJN.S216204
[20]  Kasemets, K., Ivask, A., Dubourguier, H.C. and Kahru, A. (2009) Toxicity of Nanoparticles of ZnO, CuO and TiO2 to Yeast Saccharomyces cerevisiae. Toxicology in Vitro, 23, 1116-1122.
https://doi.org/10.1016/j.tiv.2009.05.015
[21]  He, L., Liu, Y., Mustapha, A. and Lin, M. (2011) Anti-fungal Activity of Zinc Oxide Nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiological Research, 166, 207-215.
https://doi.org/10.1016/j.micres.2010.03.003
[22]  Zhu, X., Pathakoti, K. and Huey-Min, H. (2019) Green Synthesis of Titanium Dioxide and Zinc Oxide Nanoparticles and Their Usage for Antimicrobial Applications and Environmental Remediation. In: Green Synthesis, Characterization and Applications of Nanoparticles, Elsevier, Amsterdam, 223-263.
https://doi.org/10.1016/B978-0-08-102579-6.00010-1
[23]  Premanathan, M., Karthikeyan, K., Jeyasubramanian, K. and Manivannan, G. (2011) Selective Toxicity of ZnO Nanoparticles toward Grampositive Bacteria and Cancer Cells by Apoptosis through Lipid Peroxidation. Nanomedicine, 7, 184-192.
https://doi.org/10.1016/j.nano.2010.10.001
[24]  Reddy, K.M., Feris, K., Bell, J., Wingett, D.G., Hanley, C. and Punnoose, A. (2007) Selective Toxicity of Zinc Oxide Nanoparticles to Prokaryotic and Eukaryotic Systems. Applied Physics Letters, 90, 2139021-2139023.
https://doi.org/10.1063/1.2742324
[25]  Sawai, J. (2003) Quantitative Evaluation of Antibacterial Activities of Metallic Oxide Powders (ZnO, MgO and CaO) by Conductimetric Assay. Journal of Microbiological Methods, 54, 177-182.
https://doi.org/10.1016/S0167-7012(03)00037-X
[26]  Zhang, L., Ding, Y., Povey, M. and York, D. (2008) ZnO Nanofluids—A Potential Antibacterial Agent. Progress in Natural Science, 18, 939-944.
https://doi.org/10.1016/j.pnsc.2008.01.026
[27]  Zhang, L., Jiang, Y., Ding, Y., Povey, M. and York, D. (2007) Investigation into the Antibacterial Behaviour of Suspensions of ZnO Nanoparticles (ZnO Nanofluids). Journal of Nanoparticle Research, 9, 479-489.
https://doi.org/10.1007/s11051-006-9150-1
[28]  Buzea, C., Pacheco, I.I. and Robbie, K. (2007) Nanomaterials and Nanoparticles: Sources and Toxicity. Biointerphases, 2, 17-71.
https://doi.org/10.1116/1.2815690
[29]  Jamroz, N.U. (2003) Determination of Vinyl Acetate (VA) Content of Ethylene-Vinyl Acetate (EVA) Copolymers in Thick Films by Infrared Spectroscopy. Journal of the Chemical Society of Pakistan, 25, 84-87.
[30]  Mousavi, S.A., Gholizadeh, M., Sedghi, S., Pourafshari-Chemar, M., Bernala, M. and Soltani, A. (2010) Effects of Preparation Conditions on the Morphology and Gas Permeation Properties of Polyethylene (PE) and Ethylene Vinyl Acetate (EVA) Films. Chemical Engineering Research and Design, 88, 1593-1598.
https://doi.org/10.1016/j.cherd.2010.03.013
[31]  Khairy, M., Amin, N.H. and Kamal, R. (2017) Optical and Kinetics of Thermal Decomposition of PMMA/ZnO Nanocomposites. Journal of Thermal Analysis and Calorimetry, 128, 1811-1824.
https://doi.org/10.1007/s10973-016-6062-x
[32]  Bumbudsanpharoke, N., Choi, J., Park, H.J. and Ko, S. (2019) Zinc Migration and Its Effect on the Functionality of a Low Density Polyethylene-ZnO Nanocomposite Film. Food Packaging and Shelf Life, 20, 1-8.
https://doi.org/10.1016/j.fpsl.2019.100301
[33]  Xiong, G., Pal, U., Serrano, J.G., Ucer, K.B. and Williams, R.T. (2006) Photoluminescence and FTIR Study of ZnO Nanoparticles: The Impurity and Defect Perspective. Physica Status Solidi, 3, 3577-3581.
https://doi.org/10.1002/pssc.200672164
[34]  Zhang, S.P. and Song, H.O. (2012) Supramolecular Graphene Oxide-Alkylamine Hybrid Materials: Variation of Dispersibility and Improvement of Thermal Stability. New Journal of Chemistry, 36, 1733-1738.
https://doi.org/10.1039/c2nj40214a
[35]  Monteiro, M.S.S.B. and Tavares, M.I.B. (2018) The Development and Characterization of Polycaprolactone and Titanium Dioxide Hybrids. Advances in Nanoparticles, 7, 11-27.
https://doi.org/10.4236/anp.2018.71002
[36]  Silva, M.B.R., Junior, A.W.M., Neto, R.P.C. and Tavares, M.I.B. (2016) Evaluation of Intermolecular Interactions in the PHB/ZnO Nanostructured Materials. Journal of Nanoscience and Nanotechnology, 16, 7606-7610.
https://doi.org/10.1166/jnn.2016.11760
[37]  Giurginca, M., Popa, L. and Zaharescu, T. (2003) Thermo-Oxidative Degradation and Radio-Processing of Ethylene Vinyl Acetate Elastomers. Polymer Degradation and Stability, 82, 463-466.
https://doi.org/10.1016/S0141-3910(03)00200-3
[38]  Sefadi, J.S. and Luyt, A.S. (2012) Morphology and Properties of EVA/Empty Fruit Bunch Composites. Journal of Thermoplastic Composite Materials, 25, 895-914.
https://doi.org/10.1177/0892705711421806
[39]  Zubkiewicz, A., Szymczyk, A., Paszkiewicz, S., Jedrzejewski, R., Piesowicz, E. and Siemiński, J. (2020) Ethylene Vinyl Acetate Copolymer/Halloysite Nanotubes Nanocomposites with Enhanced Mechanical and Thermal Properties. Journal of Applied Polymer Science, 1-12.
https://doi.org/10.1002/app.49135
[40]  Corrêa, A.C., Teodoro, K.B.R., Simão, J.A., Claro, P.I.C., Teixeira, E.M., Mattoso, L.H.C. and Marconcini, J.M. (2020) Cellulose Nanocrystals from Curaua Fibers and Poly[ethylene-co-(vinyl acetate)] Nanocomposites: Effect of Drying Process of CNCs on Thermal and Mechanical Properties. Polymer Composites, 1-13.
https://doi.org/10.1002/pc.25493
[41]  Wang, K. and Deng, Q. (2019) The Thermal and Mechanical Properties of Poly(ethylene-co-vinyl acetate) Random Copolymers (PEVA) and Its Covalently Crosslinked Analogues (cPEVA). Polymer, 11, 1-18.
https://doi.org/10.3390/polym11061055
[42]  Cottaz, A., Bouarab, L., De Clercq, J., Oulahal, N., Degraeve, P. and Joly, C. (2019) Potential of Incorporation of Antimicrobial Plant Phenolics into Polyolefin-Based Food Contact Materials to Produce Active Packaging by Melt-Blending: Proof of Concept with Isobutyl-4-Hydroxybenzoate. Frontiers in Chemistry, 7, 148.
https://doi.org/10.3389/fchem.2019.00148
[43]  Ahmad, J., Deshmukh, K., Habib, M. and Hägg, M.B. (2014) Influence of TiO2 Nanoparticles on the Morphological, Thermal and Solution Properties of PVA/TiO2 Nanocomposite Membranes. Arabian Journal for Science and Engineering, 39, 6805-6814.
https://doi.org/10.1007/s13369-014-1287-0
[44]  Heidarbeigi, J., Borghei, A.M. and Afshari, H. (2019) The Mechanical and Thermal Properties of PE/CNC Nanocomposite. International Journal of Nano Dimension, 10, 209-216.
[45]  Rapp, G., Tireau, J., Bussiere, P.O., Chenal, J.M., Rousset, F., Chazeau, L., Gardette, J.L. and Therias, S. (2019) Influence of the Physical State of a Polymer Blend on Thermal Ageing. Polymer Degradation and Stability, 163, 161-173.
https://doi.org/10.1016/j.polymdegradstab.2019.03.006
[46]  Passos, A.A., Tavares, M.I.B., Neto, R.C.P. and Ferreira, A.G. (2012) The Use of Solid State NMR to Evaluate EVA/Silica Films. Journal of Nano Research, 18, 219-226.
https://doi.org/10.4028/www.scientific.net/JNanoR.18-19.219
[47]  Iulianelli, G.C.V., Sebastião, P.J.O., Tavares, M.I.B. and dos Santos, F.A. (2015) Influence of Organoclay Structure on Nanostructured Materials Based on EVA. Materials Sciences and Applications, 6, 860-868.
https://doi.org/10.4236/msa.2015.610088
[48]  Mota, R.C.D.A.G., Silva, E.O. and Menezes, L.R. (2019) Coating of 3D Printed Scaffolds with PVA-Based Metallic Oxides Nanocomposites for Bone Tissue Regeneration. Sciences (IRJPMS), 2, 55-62.
[49]  Besghini, D., Mauri, M. and Simonutti, R. (2019) Time Domain NMR in Polymer Science: From the Laboratory to the Industry. Applied Sciences, 9, 1801.
https://doi.org/10.3390/app9091801

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413