全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Large Eddy Simulation of Autoignition in a Turbulent Hydrogen Jet Flame Using a Progress Variable Approach

DOI: 10.1155/2012/780370

Full-Text   Cite this paper   Add to My Lib

Abstract:

The potential of a progress variable formulation for predicting autoignition and subsequent kernel development in a nonpremixed jet flame is explored in the LES (Large Eddy Simulation) context. The chemistry is tabulated as a function of mixture fraction and a composite progress variable, which is defined as a combination of an intermediate and a product species. Transport equations are solved for mixture fraction and progress variable. The filtered mean source term for the progress variable is closed using a probability density function of presumed shape for the mixture fraction. Subgrid fluctuations of the progress variable conditioned on the mixture fraction are neglected. A diluted hydrogen jet issuing into a turbulent coflow of preheated air is chosen as a test case. The model predicts ignition lengths and subsequent kernel growth in good agreement with experiment without any adjustment of model parameters. The autoignition length predicted by the model depends noticeably on the chemical mechanism which the tabulated chemistry is based on. Compared to models using detailed chemistry, significant reduction in computational costs can be realized with the progress variable formulation. 1. Introduction Autoignition in nonpremixed and partially premixed turbulent flow is of interest for industrial applications such as sequential gas turbines or HCCI (Homogeneously Charged Compression Ignition) piston engines, see [1] for a recent review. The present work is motivated by the need for a more accurate model of reheat combustion in sequential gas turbine combustors [2, 3]. In a sequential gas turbine system, hot gas produced in a first combustion chamber expands through a high pressure turbine before additional fuel is injected in a second “reheat combustion chamber.” Since highly preheated exhaust gases enter the reheat combustor, autoignition plays an important role in determining flame position and thus emissions. A characteristic of autoignition is an induction period, during which a pool of radicals is built up without significant heat release. During that phase, temperatures are typically rather low, such that steady-state or partial equilibrium relations may not be invoked to reduce the chemical mechanism. The induction period is followed by a fast heat release phase, during which the intermediate radicals from the radical pool are consumed rapidly and combustion products are formed. If autoignition occurs in turbulent flows, the chemical and the fluid-mechanical time scales are often of the same order. Simplifying assumptions like fast (or slow)

References

[1]  E. Mastorakos, “Ignition of turbulent non-premixed flames,” Progress in Energy and Combustion Science, vol. 35, no. 1, pp. 57–97, 2009.
[2]  F. Joos, P. Brunner, B. Schulte-Werning, K. Syed, and A. Eroglu, “Development of the sequential combustion system for the ABB GT24/GT26 gas turbine family,” in Proceedings of the International Gas Turbine and Aeroengine Congress & Exposition, ASME (96-GT-315), Birmingham, UK, 1996.
[3]  M. Brandt, W. Polifke, B. Ivancic, P. Flohr, and B. Paikert, “Auto-ignition in a gas turbine burner at elevated temperature,” in Proceedings of the International Gas Turbine and Aeroengine Congress &Exposition, ASME (2003-GT-38224), Atlanta, Ga, USA, 2003.
[4]  C. N. Markides and E. Mastorakos, “An experimental study of hydrogen autoignition in a turbulent co-flow of heated air,” Proceedings of the Combustion Institute, vol. 30, no. 1, pp. 883–891.
[5]  E. Mastorakos, C. N. Markides, and Y. M. Wright, “Hydrogen auto-ignition in a turbulentduct flow: experiments and modeling,” in Proceedings of the 12th Conference on Modeling Fluid Flow (CMFF '03), 2003.
[6]  I. Stankovi?, A. Triantafyllidis, E. Mastorakos, C. Lacor, and B. Merci, “Simulation of hydrogen auto-ignition in a turbulent Co-flow of heated air with LES and CMC approach,” Flow, Turbulence and Combustion, vol. 86, no. 3-4, pp. 689–710, 2011.
[7]  S. Navarro-Martinez and W. P. Jones, “Study of hydrogen auto-ignition in a turbulent air co-flow using a Large Eddy Simulation approach,” Computers and Fluids, vol. 37, no. 7, pp. 802–808, 2008.
[8]  L. Vervisch, R. Hauguel, P. Domingo, and M. Rullaud, “Three facets of turbulent combustion modelling: DNS of premixed V-flame, LES of lifted nonpremixed flame and RANS of jet-flame,” Journal of Turbulence, vol. 5, no. 1, 2004.
[9]  C. D. Pierce, Progress-variable approach for large-eddy simulation of turbulent combustion, Ph.D. thesis, Stanford University, Stanford, Calif, USA, 2001.
[10]  C. D. Pierce and P. Moin, “Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion,” Journal of Fluid Mechanics, no. 504, pp. 73–97, 2004.
[11]  P. Domingo, L. Vervisch, and K. Bray, “Partially premixed flamelets in LES of nonpremixed turbulent combustion,” Combustion Theory and Modelling, vol. 6, no. 4, pp. 529–551, 2002.
[12]  P. Domingo, L. Vervisch, and D. Veynante, “Auto-ignition and ame Propagation effects in LESof burned gases diluted turbulent combustion,” in Proceedings of the Summer Program, pp. 337–348, Center for Turbulence Research, 2006.
[13]  J. Galpin, C. Angelberger, A. Naudin, and L. Vervisch, “Large-eddy simulation of H2-air auto-ignition using tabulated detailed chemistry,” Journal of Turbulence, vol. 9, no. 13, pp. 1–21, 2008.
[14]  D. Bradley, L. K. Kwa, A. K. C. Lau, M. Missaghi, and S. B. Chin, “Laminar flamelet modeling of recirculating premixed methane and propane-air combustion,” Combustion and Flame, vol. 71, no. 2, pp. 109–122, 1988.
[15]  D. Bradley and A. K. C. Lau, “The mathematical modelling of premixed turbulent combustion,” Pure and Applied Chemistry, vol. 62, no. 5, pp. 803–814, 1990.
[16]  A. C. Benim and K. J. Syed, “Laminar flamelet modelling of turbulent premixed combustion,” Applied Mathematical Modelling, vol. 22, no. 1-2, pp. 113–136, 1998.
[17]  W. Polifke, M. Bettelini, W. Geng, U. C. Muller, W. Weisenstein, and P. A. Jansohn, Comparisonof Combustion Models for Industrial Applications, Eccomas 98, Athens, Greece, 1998.
[18]  C. S. Chang, Y. Zhang, K. N. C. Bray, and B. Rogg, “Modelling and simulation of autoignition under simulated diesel-engine conditions,” Combustion Science and Technology, vol. 113-114, pp. 205–219, 1996.
[19]  L. P. H. De Goey and J. H. M. Ten Thije Boonkkamp, “A flamelet description of premixed laminar flames and the relation with flame stretch,” Combustion and Flame, vol. 119, no. 3, pp. 253–271, 1999.
[20]  B. Ivancic, P. Flohr, B. Paikert, M. Brandt, and W. Polifke, “Auto-ignition and heat release in a gas turbine burner at elevated temperature,” in Proceedings of the International Gas Turbine and AeroengineCongress & Exposition, ASME GT-2004-53339, Vienna, Austria, 2004.
[21]  M. Brandt, W. Polifke, and P. Flohr, “Approximation of joint PDFs by discrete distributions generated with Monte Carlo methods,” Combustion Theory and Modelling, vol. 10, no. 4, pp. 535–558, 2006.
[22]  M. ó Conaire, H. J. Curran, J. M. Simmie, W. J. Pitz, and C. K. Westbrook, “A comprehensive modeling study of hydrogen oxidation,” International Journal of Chemical Kinetics, vol. 36, no. 11, pp. 603–622, 2004.
[23]  O. Gicquel, N. Darabiha, and D. Thévenin, “Laminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion,” Proceedings of the Combustion Institute, vol. 28, no. 2, pp. 1901–1907, 2000.
[24]  C. D. Pierce and P. Moin, “A dynamic model for subgrid-scale variance and dissipation rate of a conserved scalar,” Physics of Fluids, vol. 10, no. 12, pp. 3041–3044, 1998.
[25]  ANSYS FLUENT Academic Research, Release 6.3, 2006.
[26]  R. A. Yetter, F. L. Dryer, and H. Rabitz, “A comprehensive reaction mechanism for carbonmonoxide/ hydrogen/oxygen kinetics,” Combustion Science and Technology, vol. 79, pp. 97–129, 1991.
[27]  Caltech, “Cantera: object-oriented software for reacting,” Release 1.8.0, 2009, http://code.google.com/p/cantera/.
[28]  J. Li, Z. Zhao, A. Kazakov, and F. L. Dryer, “An updated comprehensive kinetic model of hydrogen combustion,” International Journal of Chemical Kinetics, vol. 36, no. 10, pp. 566–575, 2004.
[29]  I. B. Celik, Z. N. Cehreli, and I. Yavuz, “Index of resolution quality for large eddy simulations,” Journal of Fluids Engineering, vol. 127, no. 5, pp. 949–958, 2005.
[30]  G. Taylor, “Dispersion of soluble matter in solvent flowing slowly through a tube,” Proceedings of the Royal Society A, vol. 219, pp. 186–203, 1953.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413