全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Biomedical Applications of Shape Memory Alloys

DOI: 10.1155/2011/501483

Full-Text   Cite this paper   Add to My Lib

Abstract:

Shape memory alloys, and in particular NiTi alloys, are characterized by two unique behaviors, thermally or mechanically activated: the shape memory effect and pseudo-elastic effect. These behaviors, due to the peculiar crystallographic structure of the alloys, assure the recovery of the original shape even after large deformations and the maintenance of a constant applied force in correspondence of significant displacements. These properties, joined with good corrosion and bending resistance, biological and magnetic resonance compatibility, explain the large diffusion, in the last 20 years, of SMA in the production of biomedical devices, in particular for mini-invasive techniques. In this paper a detailed review of the main applications of NiTi alloys in dental, orthopedics, vascular, neurological, and surgical fields is presented. In particular for each device the main characteristics and the advantages of using SMA are discussed. Moreover, the paper underlines the opportunities and the room for new ideas able to enlarge the range of SMA applications. However, it is fundamental to remember that the complexity of the material and application requires a strict collaboration between clinicians, engineers, physicists and chemists for defining accurately the problem, finding the best solution in terms of device design and accordingly optimizing the NiTi alloy properties. 1. Introduction Nowadays, shape memory alloys (SMA), and in particular nickel-titanium alloys (NiTi), are commonly used in biomedical applications (see among others [1–7]). The main attractive features of this class of materials are the capabilities of: (1) recovering the original shape after large deformations induced by mechanical load (pseudoelasticity) and (2) maintaining a deformed shape up to heat induced recovery of the original shape (shape memory effect). The explanation of these peculiar behaviors can be found in the crystallography and thermodynamics of SMA (see among others [8–11] and references therein). Indeed, SMAs are characterized by two solid phases: the austenitic phase ( ), which is stable at high temperatures ( austenite finish transformation temperature) and with high symmetry, and the martensitic phase, which is stable at low temperatures ( martensite finish transformation temperature, with ) and with low symmetry. In particular, the martensite can exist in two configurations: (i) the stress-free martensite, characterized by a twinned multivariant ( ) crystallographic structure, which minimizes the misfit with the surroundings (austenitic phase), hence not associated

References

[1]  T. W. Duerig, K. N. Melton, D. St?ckel, and C. M. Wayman, Engineering Aspects of Shape Memory Alloys, Butterworth-Heinemann, London, UK, 1990.
[2]  in Proceedings of the 1stInternational Conference on Shape Memory and Superelastic Technologies, A. R. Pelton, D. Hodgson, and T. Duerig, Eds., Asilomar, Calif, USA, 1995.
[3]  in Proceedings of the 2nd International Conference on Shape Memory and Superelastic Technologies, A. R. Pelton, D. Hodgson, and T. Duerig, Eds., Asilomar, Calif, USA, 1997.
[4]  T. Duerig, A. Pelton, and D. St?ckel, “An overview of nitinol medical applications,” Materials Science and Engineering A, vol. 273–275, pp. 149–160, 1999.
[5]  C. D. J. Barras and K. A. Myers, “Nitinol—its use in vascular surgery and other applications,” European Journal of Vascular and Endovascular Surgery, vol. 19, no. 6, pp. 564–569, 2000.
[6]  D. Tarni?ǎ, D. N. Tarni?ǎ, N. B?zdoacǎ, I. M?ndrilǎ, and M. Vasilescu, “Properties and medical applications of shape memory alloys,” Romanian Journal of Morphology and Embryology, vol. 50, no. 1, pp. 15–21, 2009.
[7]  in Proceedings of the 3rd International Conference on Shape Memory and Superelastic Technologies, S. M. Russel and A. R. Pelton, Eds., Asilomar, Calif, USA, 2000.
[8]  H. Funakubo, Shape Memory Alloys, Gordon and Breach Science Publishers, New York, NY, USA, 1987.
[9]  C. M. Wayman, “Shape memory and related phenomena,” Progress in Materials Science, vol. 36, no. 1, pp. 203–224, 1992.
[10]  K. Otsuka and C. M. Wayman, Shape Memory Materials, Cambridge University Press, Cambridge, Mass, USA, 1998.
[11]  K. Otsuka and X. Ren, “Physical metallurgy of Ti-Ni-based shape memory alloys,” Progress in Materials Science, vol. 50, no. 5, pp. 511–678, 2005.
[12]  T. W. Duerig, K. N. Pelton, and D. St?ckel, “Superelastic nitinol for medical devices,” Medical Plastics and Biomaterials, vol. 2, pp. 30–43, 1997.
[13]  C. Trépanier, T. K. Leung, M. Tabrizian et al., “Preliminary investigation of the effects of surface treatments on biological response to shape memory NiTi stents,” Journal of Biomedical Materials Research, vol. 48, no. 2, pp. 165–171, 1999.
[14]  B. Thierry, Y. Merhi, L. Bilodeau, C. Trépanier, and M. Tabrizian, “Nitinol versus stainless steel stents: acute thrombogenicity study in an ex vivo porcine model,” Biomaterials, vol. 23, no. 14, pp. 2997–3005, 2002.
[15]  J. Ryhanen, Biocompatibility evaluation of nickel-titanium shape-memory metal alloy, Ph.D. dissertation, University of Oulu, Department of Surgery, Oulu, Finlandia, 1999.
[16]  A. Holton, E. Walsh, A. Anayiotos, G. Pohost, and R. Venugopalan, “Comparative MRI compatibility of 316L stainless steel alloy and nickel-titanium alloy stents,” Journal of Cardiovascular Magnetic Resonance, vol. 4, no. 4, pp. 423–430, 2002.
[17]  S. A. Shabalovskaya, “On the nature of the biocompatibility and on medical applications of NiTi shape memory and superelastic alloys,” Bio-Medical Materials and Engineering, vol. 6, no. 4, pp. 267–289, 1996.
[18]  P. Poncin, C. Millet, J. Chevy, and J. L. Proft, “Comparing and optimizing Co-Cr tubing for stent applications,” in Proceedings of the Materials and Processes for Medical Devices Conference, pp. 279–283, August 2004.
[19]  G. F. Andreasen and T. B. Hilleman, “An evaluation of 55 cobalt substituted Nitinol wire for use in orthodontics,” The Journal of the American Dental Association, vol. 82, no. 6, pp. 1373–1375, 1971.
[20]  L. Torrisi, “The NiTi superelastic alloy application to the dentistry field,” Bio-Medical Materials and Engineering, vol. 9, no. 1, pp. 39–47, 1999.
[21]  G. Airoldi, G. Riva, and M. Vanelli, “Superelasticity and shape-memory effect in Ni-Ti orthodontic wires,” in Proceedings of the International Conference on Martensitic Transformations (ICOMAT '95), 1995.
[22]  S. Idelsohn, J. Pe?a, D. Lacroix, J. A. Planell, F. J. Gil, and A. Arcas, “Continuous mandibular distraction osteogenesis using superelastic shape memory alloy (SMA),” Journal of Materials Science, vol. 15, no. 4, pp. 541–546, 2004.
[23]  L. Torrisi and G. Di Marco, “Physical characterization of endodontic instruments in NiTi alloy,” in Proceedings of the International Symposium on Shape Memory Materials, Materials Science Forum, vol. 327, pp. 75–78, 2000.
[24]  P. Parashos and H. H. Messer, “The diffusion of innovation in dentistry: a review using rotary nickel-titanium technology as an example,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology, vol. 101, no. 3, pp. 395–401, 2006.
[25]  B. Sattapan, J. E. Palamara, and H. H. Messer, “Torque during canal instrumentation using rotary nickel-titanium files,” Journal of Endodontics, vol. 26, no. 3, pp. 156–160, 2000.
[26]  K. R. Dai, X. K. Hou, Y. H. Sun, R. G. Tang, S. J. Qiu, and C. Ni, “Treatment of intra-articular fractures with shape memory compression staples,” Injury, vol. 24, no. 10, pp. 651–655, 1993.
[27]  Z. Laster, A. D. MacBean, P. R. Ayliffe, and L. C. Newlands, “Fixation of a frontozygomatic fracture with a shape-memory staple,” British Journal of Oral and Maxillofacial Surgery, vol. 39, no. 4, pp. 324–325, 2001.
[28]  M. A. Schmerling, M. A. Wilkor, A. E. Sanders, and J. E. Woosley, “A proposed medical application of the shape memory effect: an Ni-Ti Harrington rod for treatment of scoliosis,” Journal of Biomedical Materials Research, vol. 10, pp. 879–902, 1976.
[29]  J. O. Sanders, A. E. Sanders, R. More, and R. B. Ashman, “A preliminary investigation of shape memory alloys in the surgical correction of scoliosis,” Spine, vol. 18, no. 12, pp. 1640–1646, 1993.
[30]  D. Wever, J. Elstrodt, A. Veldhuizen, and J. Horn, “Scoliosis correction with shape-memory metal: results of an experimental study,” European Spine Journal, vol. 11, no. 2, pp. 100–106, 2002.
[31]  R. Contro, V. Dallolio, G. Franzoso, D. Gastaldi, and P. Vena, “Biomechanical study of a pathologic lumbar functional spinal unit and a possible surgical treatment through the implant of an interspinous device,” in Biomechanics Applied to Computer Assisted Surgery, Y. Payan, Ed., pp. 39–52, Research Signpost, Trivandrum, India, 2005.
[32]  S. Kujala, J. Ryh?nen, T. J?ms? et al., “Bone modeling controlled by a nickel-titanium shape memory alloy intramedullary nail,” Biomaterials, vol. 23, no. 12, pp. 2535–2543, 2002.
[33]  M. Coati, G. Marazzi, G. Marini, L. Rossi, L. Rossi, and D. Venturini, Intramedullary Nail Comprising Elements of Shape-Memory Material, United States Patent Application Publication, 2008.
[34]  L. G. Machado and M. A. Savi, “Medical applications of shape memory alloys,” Brazilian Journal of Medical and Biological Research, vol. 36, no. 6, pp. 683–691, 2003.
[35]  S. Abkowitz, J. M. Siergiej, and R. R. Regan, “Titanium-nickel alloy manufacturing methods,” United States Patent Office Patent no. 3,700,434, 1969.
[36]  S. A. Shabalovskaya, “Surface, corrosion and biocompatibility aspects of Nitinol as an implant material,” Bio-Medical Materials and Engineering, vol. 12, no. 1, pp. 69–109, 2002.
[37]  S. Shabalovskaya, J. Ryhanen, and L. H. Yahia, “Bioperformance of nitinol: surface tendencies,” Shape-Memory Alloy and Its Application, vol. 394, pp. 131–138, 2001.
[38]  A. Bansiddhi, T. D. Sargeant, S. I. Stupp, and D. C. Dunand, “Porous NiTi for bone implants: a review,” Acta Biomaterialia, vol. 4, no. 4, pp. 773–782, 2008.
[39]  C. E. Wen, J. Y. Xiong, Y. C. Li, and P. D. Hodgson, “Porous shape memory alloy scaffolds for biomedical applications: a review,” Physica Scripta, vol. 39, Article ID 014070, 2010.
[40]  F. Likibi, M. Assad, C. Coillard, G. Chabot, and C. H. Rivard, “Bone integration and apposition of porous and non porous metallic orthopaedic biomaterials,” Annales de Chirurgie, vol. 130, no. 4, pp. 235–241, 2005.
[41]  I. P. Lipscomb and L. D. M. Nokes, The Application of Shape Memory Alloys in Medicine, Paston Press Ltd, Norfolk, Va, USA, 1996.
[42]  M. Simon, R. Kaplan, E. Salzman, and D. Freiman, “A vena cava filter using thermal shape memory alloy: experimental aspects,” Radiology, vol. 125, no. 1, pp. 89–94, 1977.
[43]  E. Engmann and M. R. Asch, “Clinical experience with the antecubital Simon nitinol IVC filter,” Journal of Vascular and Interventional Radiology, vol. 9, no. 5, pp. 774–778, 1998.
[44]  P. A. Poletti, C. D. Becker, L. Prina et al., “Long-term results of the Simon nitinol inferior vena cava filter,” European Radiology, vol. 8, no. 2, pp. 289–294, 1998.
[45]  M. R. Asch, “Initial experience in humans with a new retrievable inferior vena cava filter,” Radiology, vol. 225, no. 3, pp. 835–844, 2002.
[46]  E. Bruckheimer, A. G. Judelman, S. D. Bruckheimer, I. Tavori, G. Naor, and B. T. Katzen, “In vitro evaluation of a retrievable low-profile nitinol vena cava filter,” Journal of Vascular and Interventional Radiology, vol. 14, no. 4, pp. 469–474, 2003.
[47]  B. D. Thanopoulos, C. V. Laskari, G. S. Tsaousis, A. Zarayelyan, A. Vekiou, and G. S. Papadopoulos, “Closure of atrial septal defects with the amplatzer occlusion device: preliminary results,” Journal of the American College of Cardiology, vol. 31, no. 5, pp. 1110–1116, 1998.
[48]  K. C. Chan, M. J. Godman, K. Walsh, N. Wilson, A. Redington, and J. L. Gibbs, “Transcatheter closure of atrial septal defect and interatrial communications with a new self expanding nitinol double disc device (Amplatzer septal occluder): multicentre UK experience,” Heart, vol. 82, no. 3, pp. 300–306, 1999.
[49]  K. P. Walsh and I. M. Maadi, “The Amplatzer septal occluder,” Cardiology in the Young, vol. 10, no. 5, pp. 493–501, 2000.
[50]  S. Tyagi, S. Singh, S. Mukhopadhyay, and U. A. Kaul, “Self- and balloon-expandable stent implantation for severe native coarctation of aorta in adults,” American Heart Journal, vol. 146, no. 5, pp. 920–928, 2003.
[51]  A. J. Carter, D. Scott, J. R. Laird et al., “Progressive vascular remodeling and reduced neointimal formation after placement of a thermoelastic self-expanding nitinol stent in an experimental model,” Catheterization and Cardiovascular Diagnosis, vol. 44, no. 2, pp. 193–201, 1998.
[52]  G. Lewis, “Materials, fluid dynamics, and solid mechanics aspects of coronary artery stents: a state-of-the-art review,” Journal of Biomedical Materials Research. Part B, vol. 86, no. 2, pp. 569–590, 2008.
[53]  K. A. Hausegger, A. H. Cragg, J. Lammer et al., “Iliac artery stent placement: clinical experience with a nitinol stent,” Radiology, vol. 190, no. 1, pp. 199–202, 1994.
[54]  P. Carpenter, V. Rimbau, D. Raithel, and P. Peeters, “Challenging EVAR indication,” Supplement to Endovascular Today, 2003.
[55]  J. A. Kaufman, S. C. Geller, D. C. Brewster et al., “Endovascular repair of abdominal aortic aneurysms: current status and future directions,” American Journal of Roentgenology, vol. 175, no. 2, pp. 289–302, 2000.
[56]  R. Uflacker and J. Robison, “Endovascular treatment of abdominal aortic aneurysms: a review,” European Radiology, vol. 11, no. 5, pp. 739–753, 2001.
[57]  M. Cattaneo, “Caratterizzazione biomeccanica sperimentale di stent-grafts,” Tesi di Laurea, Politecnico di Milano, 2006.
[58]  L. Coats and P. Bonhoeffer, “New percutaneous treatments for valve disease,” Heart, vol. 93, no. 5, pp. 639–644, 2007.
[59]  J. C. Laborde, D. V. M. Borensyein, D. V. M. Behr, B. Farah, and J. Fajadet, “Percutaneus implantation of the corevalve aortic valve prosthesis for patients presenting high risk for surgical valve replacement,” Eurointerv, vol. 1, pp. 472–474, 2006.
[60]  D. S. Levi, N. Kusnezov, and G. P. Carman, “Smart materials applications for pediatric cardiovascular devices,” Pediatric Research, vol. 63, no. 5, pp. 552–558, 2008.
[61]  A. R. Pelton, V. Schroeder, M. R. Mitchell, X. Y. Gong, M. Barney, and S. W. Robertson, “Fatigue and durability of Nitinol stents,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 1, no. 2, pp. 153–164, 2008.
[62]  D. Allie, C. Hebert, et al., “Nitinol stent fractures in the SFA,” Endovascular Today, pp. 22–34, 2004.
[63]  N. B. Morgan, “Medical shape memory alloy applications—the market and its products,” Materials Science and Engineering A, vol. 378, no. 1-2, pp. 16–23, 2004.
[64]  D. J. Hoh, B. L. Hoh, A. P. Amar, and M. Y. Wang, “Shape memory alloys: metallurgy, biocompatibility, and biomechanics for neurosurgical applications,” Neurosurgery, vol. 64, no. 5, pp. 199–214, 2009.
[65]  P. H. P. Davids, A. K. Groen, E. A. J. Rauws, G. N. J. Tytgat, and K. Huibregtse, “Randomised trial of self-expanding metal stents versus polyethylene stents for distal malignant biliary obstruction,” Lancet, vol. 340, no. 8834-8835, pp. 1488–1492, 1992.
[66]  P. Rossi, M. Bezzi, M. Rossi et al., “Metallic stents in malignant biliary obstruction: results of a multicenter European study of 240 patients,” Journal of Vascular and Interventional Radiology, vol. 5, no. 2, pp. 279–285, 1994.
[67]  M. Smits, K. Huibregtse, and G. Tytgat, “Results of the new nitinol self-expandable stents for distal biliary strictures,” Endoscopy, vol. 27, no. 7, pp. 505–508, 1995.
[68]  I. Vinograd, B. Klin, T. Brosh, M. Weinberg, Y. Flomenblit, and Z. Nevo, “A new intratracheal stent made from nitinol, an alloy with 'shape memory effect',” Journal of Thoracic and Cardiovascular Surgery, vol. 107, no. 5, pp. 1255–1261, 1994.
[69]  K. Yanagihara, H. Mizuno, H. Wada, and S. Hitomi, “Tracheal stenosis treated with self-expanding nitinol stent,” Annals of Thoracic Surgery, vol. 63, no. 6, pp. 1786–1790, 1997.
[70]  W. Cwikiel, R. Willen, H. Stridbeck, R. Lillo-Gil, and C. S. Von Holstein, “Self-expanding stent in the treatment of benign esophageal strictures: experimental study in pigs and presentation of clinical cases,” Radiology, vol. 187, no. 3, pp. 667–671, 1993.
[71]  M. Pocek, F. Maspes, S. Masala et al., “Palliative treatment of neoplastic strictures by self-expanding nitinol Strecker stent,” European Radiology, vol. 6, no. 2, pp. 230–235, 1996.
[72]  C. E. Angueira and S. C. Kadakia, “Esophageal stents for inoperable esophageal cancer: which to use?” American Journal of Gastroenterology, vol. 92, no. 3, pp. 373–376, 1997.
[73]  J. Tack, A. M. Gevers, and P. Rutgeerts, “Self-expandable metallic stents in the palliation of rectosigmoidal carcinoma: a follow-up study,” Gastrointestinal Endoscopy, vol. 48, no. 3, pp. 267–271, 1998.
[74]  H. W. Gottfried, R. Gnann, E. Brandle, R. Bachor, J. E. Gschwend, and K. Kleinschmidt, “Treatment of high-risk patients with subvesical obstruction from advanced prostatic carcinoma using a thermosensitive mesh stent,” British Journal of Urology, vol. 80, no. 4, pp. 623–627, 1997.
[75]  D. Yachia, “The use of urethral stents for the treatment of urethral strictures,” Annales d'Urologie, vol. 27, no. 4, pp. 245–250, 1993.
[76]  K. Mori, S. Okamoto, and M. Akimoto, “Placement of the urethral stent made of shape memory alloy in management of benign prostatic hypertrophy for debilitated patients,” Journal of Urology, vol. 154, no. 3, pp. 1065–1068, 1995.
[77]  J. M. Himpens, “Laparoscopic inguinal hernioplasty—repair with a conventional vs a new self-expandable mesh,” Surgical Endoscopy, vol. 7, no. 4, pp. 315–318, 1993.
[78]  S. Kujala, A. Pajala, M. Kallioinen, A. Pramila, J. Tuukkanen, and J. Ryh?nen, “Biocompatibility and strength properties of nitinol shape memory alloy suture in rabbit tendon,” Biomaterials, vol. 25, no. 2, pp. 353–358, 2004.
[79]  G. P. Rajan, R. H. Eikelboom, K. S. Anandacoomaraswamy, and M. D. Atlas, “In vivo performance of the nitinol shape-memory stapes prosthesis during hearing restoration surgery in otosclerosis: a first report,” Journal of Biomedical Materials Research. Part B, vol. 72, no. 2, pp. 305–309, 2005.
[80]  I. L. Nudelman, V. Fuko, F. Greif, and S. Lelcuk, “Colonic anastomosis with the nickel-titanium temperature-dependent memory-shape device,” American Journal of Surgery, vol. 183, no. 6, pp. 697–701, 2002.
[81]  C. Song, T. Frank, and A. Cuschieri, “Shape memory alloy clip for compression colonic anastomosis,” Journal of Biomechanical Engineering, vol. 127, no. 2, pp. 351–354, 2005.
[82]  R. K. Khouri and L. L. C. Brava, “Method and apparatus for expanding soft tissue with shape memory alloys,” United States Patent no. US6478656B1, 2002.
[83]  J. Kourambas, F. C. Delvecchio, R. Munver, and G. M. Preminger, “Nitinol stone retrieval-assisted ureteroscopic management of lower pole renal calculi,” Urology, vol. 56, no. 6, pp. 935–939, 2000.
[84]  S. Cekirge, J. P. Weiss, R. G. Foster, H. L. Neiman, and G. K. McLean, “Percutaneous retrieval of foreign bodies: experience with the nitinol Goose Neck snare,” Journal of Vascular and Interventional Radiology, vol. 4, no. 6, pp. 805–810, 1993.
[85]  W. Y. Wang, S. G. Cooper, and S. C. Eberhardt, “Use of a nitinol gooseneck snare to open an incompletely expanded over- the-wire stainless steel Greenfield filter,” American Journal of Roentgenology, vol. 172, no. 2, pp. 499–500, 1999.
[86]  A. Biscarini, G. Mazzolai, and A. Tuissi, “Enhanced nitinol properties for biomedical applications,” Recent Patents on Biomedical Engineering, vol. 1, pp. 180–196, 2008.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413