全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Titanium-Nickel Shape Memory Alloy Spring Actuator for Forward-Looking Active Catheter

DOI: 10.1155/2011/685429

Full-Text   Cite this paper   Add to My Lib

Abstract:

The fabrication and characterization of forward-looking active catheter actuated by titanium-nickel (Ti-Ni) shape memory alloy (SMA) springs are described. The catheter has been designed for wide-range observation of an affected area inside a blood vessel when the blood vessel is occluded. The developed active catheter consists of eight Ti-Ni SMA spring actuators for actuation of catheter tip, an ultrasonic transducer for forward-looking, a guide wire, a polyurethane tube for coating, and spiral wirings for realization of various flexure motions of catheter tip using Ti-Ni SMA actuators. The size of the catheter is 3.5?mm in diameter and 60?mm in length of the sum of transducer and actuator sections. Ti-Ni SMA springs were fabricated from a Ti-50.9at.%Ni sheet by electrochemical etching with a mixed solution of ethanol and lithium chloride. The catheter was assembled by hand under a stereomicroscope. The tip of the produced catheter was able to move in parallel toward at least eight directions by controlling an applied current to Ti-Ni SMA springs. We have confirmed that the active catheter was able to observe an object settled in the front. 1. Introduction In the medical field, the catheter is a promising tool and can be widely used for minimally invasive treatment. To date, many kinds of catheter have come into practical use to remedy inside the blood vessel. To accurately treat a diseased area inside a blood vessel using a catheter, doctors must examine the exact condition of the area. It is, however, difficult to do that because doctors have to control a catheter from the outside of patient body. At present, doctors need to manipulate the catheter with their sense and experience when a blood vessel is completely occluded. So, there is some risk for catheter remedy that doctors may harm a nondiseased area accidentally. To address this issue, several devices have been developed for observing the inside of blood vessel [1–6]. For instance, intravascular ultrasound (IVUS) having a number of transducers around the catheter tube is able to obtain the cross sectional image of a blood vessel [6]. However, the device is hard to be used if the blood vessel is blocked up by a thrombus. Furthermore, even if the thrombus in front of the catheter is observed, there is no much obtainable information. Thus, a novel technique for examining a thrombus in front of the catheter should be developed for more definitive treatment. The purpose of this study is to develop a forward-looking active catheter for observing a diseased area, such as thrombus, inside a blood

References

[1]  Y. Haga and M. Esashi, “Biomedical microsystems for minimally invasive diagnosis and treatment,” Proceedings of the IEEE, vol. 92, no. 1, pp. 98–114, 2004.
[2]  K. L. Gentry and S. W. Smith, “Integrated catheter for 3-D intracardiac echocardiography and ultrasound ablation,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 51, no. 7, pp. 800–808, 2004.
[3]  T. Mineta, T. Mitsui, Y. Watanabe, S. Kobayashi, Y. Haga, and M. Esashi, “An active guide wire with shape memory alloy bending actuator fabricated by room temperature process,” Sensors and Actuators A, vol. 97-98, pp. 632–637, 2002.
[4]  Y. Haga, T. Mineta, K. Totsu, W. Makishi, and M. Esashi, “Development of active catheter, active guide wire and micro sensor systems,” Interventional Neuroradiology, vol. 7, no. 1, pp. 125–130, 2001.
[5]  H. Kubo, M. Abe, T. Mineta, E. Makino, and T. Shibata, “Fabrication of microactuator for active catheter from SMA thin film tube,” in Proceedings of the 21st Sensor Symposium, pp. 39–42, 2004.
[6]  S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 54, no. 5, pp. 976–986, 2007.
[7]  R. H. Wolf and A. H. Heuer, “TiNi (shape memory) films on silicon for MEMS applications,” Journal of Microelectromechanical Systems, vol. 4, no. 4, pp. 206–212, 1995.
[8]  E. Makino, M. Uenoyama, and T. Shibata, “Flash evaporation of TiNi shape memory thin film for microactuators,” Sensors and Actuators A, vol. 71, no. 3, pp. 187–192, 1998.
[9]  X. U. Huang and Y. Liu, “Substrate-induced stress and the transformation behavior of sputter-deposited NiTi thin films,” Materials Science and Engineering A, vol. 352, no. 1-2, pp. 314–317, 2003.
[10]  T. Mineta, “Electrochemical etching of a shape memory alloy using new electrolyte solutions,” Journal of Micromechanics and Microengineering, vol. 14, no. 1, pp. 76–80, 2004.
[11]  S. Miyazaki and A. Ishida, “Shape memory characteristics of sputter-deposited Ti-Ni thin films,” Materials Transactions, JIM, vol. 35, no. 1, pp. 14–19, 1994.
[12]  XU. Huang and Y. Liu, “Substrate-induced stress and the transformation behavior of sputter-deposited NiTi thin films,” Materials Science and Engineering A, vol. 352, no. 1-2, pp. 314–317, 2003.
[13]  T. Namazu, Y. Tashiro, and S. Inoue, “Ti-Ni shape memory alloy film-actuated microstructures for a MEMS probe card,” Journal of Micromechanics and Microengineering, vol. 17, no. 1, pp. 154–162, 2007.
[14]  M. Komatsubara, T. Namazu, H. Nagasawa, T. Miki, T. Tsurui, and S. Inoue, “Development of the forward-looking active micro catheter actuated by ti-ni shape memory alloy springs,” in Proceedings of the 22nd IEEE International Conference on Micro Electro Mechanical Systems (MEMS '09), pp. 1055–1058, January 2009.
[15]  S. Inoue, T. Namazu, A. Hirayama, and K. Koterazawa, “Joule’s heat induced shape memory behavior of Ti-Ni shape memory alloy thin films,” Transactions of The Materials Research Society of Japan, vol. 29, no. 7, pp. 2985–2988, 2004.
[16]  S. Inoue, K. Hori, N. Sawada, N. Nakamoto, and T. Namazu, “Shape memory behavior of Ti-Ni-X (X= Pd, Cu) ternary alloy thin films prepared by triple-source DC magnetron sputtering,” Materials Science Forum, vol. 638–642, pp. 2068–2073, 2010.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413