全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Improving the two

DOI: 10.1177/1687814018819905

Keywords: Delay integro-differential equations,distributed-delay systems,delay differential equations,full discretization,numerical integration,Simpson’s rule

Full-Text   Cite this paper   Add to My Lib

Abstract:

The vibration of the engineering systems with distributed delay is governed by delay integro-differential equations. Two-stage numerical integration approach was recently proposed for stability identification of such oscillators. This work improves the approach by handling the distributed delay—that is, the first-stage numerical integration—with tensor-based higher order numerical integration rules. The second-stage numerical integration of the arising methods remains the trapezoidal rule as in the original method. It is shown that local discretization error is of order O ( Δ t ) 3 irrespective of the order of the numerical integration rule used to handle the distributed delay. But ( Δ t ) 3 is less weighted when higher order numerical integration rules are used to handle the distributed delay, suggesting higher accuracy. Results from theoretical error analyses, various numerical rate of convergence analyses, and stability computations were combined to conclude that—from application point of view—it is not necessary to increase the first-stage numerical integration rule beyond the first order (trapezoidal rule) though the best results are expected at the second order (Simpson’s 1/3 rule)

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413