全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Application of Facies Associations, Integrated Prediction Error Filter Analysis, and Chemostratigraphy to the Organic-Rich and Siliceous Cenomanian-Turonian Sequence, Bargou Area, Tunisia: Integrated Sequence Stratigraphic Analysis

DOI: 10.1155/2012/973195

Full-Text   Cite this paper   Add to My Lib

Abstract:

Facies associations, integrated prediction error filter analysis (INPEFA) of spectral Gamma-ray data, Sr/Ca and Mn chemostratigraphy, and sequence stratigraphy of the organic-rich and siliceous Cenomanian-Turonian Bahloul formation have been studied in Bargou section, located in north-central Tunisia. The studied section is subdivided into seven facies evolving from platform to basin deposits. Based on basin geometry, facies distribution, spectral Gamma-ray INPEFA curves, Sr/Ca and Mn profiles patterns, and the sequence was also subdivided into shelf margin wedge (uppermost Fahden Formation-lowermost Bahloul), basal transgressive systems tract (remainder Bahloul Formation) and early high-stand systems tract (Kef Formation). The Sr/Ca ratios, Mn profile, sequence stratigraphic, and cyclostratigraphic interpretations reveal the existence of four transgressive parasequences deposited throughout 420?kyr within the organic rich and siliceous Bahloul facies. 1. Introduction The evolution of the sedimentary basins, which are considered to be filled by successive depositional sequences has proved and justified the use of the application of sequence stratigraphy concepts. The burial history of the sedimentary basin is panoply of several related factors such as subsidence, local tectonics, eustatic fluctuations, carbonate production, climatic cyclicity, as well as chemical reactions issued from several factors (temperature, pressure, density, etc.). These depositional sequences are subdivided further into systems tracts and parasequences [1–3]. The stratigraphy and sedimentology of the upper Cenomanian-lower Turonian Bahloul Formation in north-central Tunisia (Figure 1) have been the subject of numerous papers and reports (e.g., [4–8]). Recently, the recognition of the effects of sea-level changes on the stratigraphic successions led to the reinterpretation of the depositional sequences by Robaszynski et al. [9] and Maamouri et al. [10]. The main sequence (Bahloul formation) is typically controlled by the global relative sea-level rise causing the major latest Cenomanian transgression which in turn was interpreted as a combined phenomenon between a long-term sea-level rise and basin subsidence [1, 11, 12]. It must be understood that this sequence seems to be generated by enhanced plate tectonic activity and by the change in the Milankovitch frequency band (e.g., [13]) justifying climatic cycles which are detected in the sedimentary record (Figure 2). The major rise in the Cenomanian sea level was interrupted by the five-third order relative sea-level falls [1].

References

[1]  B. U. Haq, J. Hardenbol, and P. R. Vail, “Chronology of fluctuating sea levels since the Triassic,” Science, vol. 235, no. 4793, pp. 1156–1167, 1987.
[2]  P. R. Vail, “Seismic stratigraphy interpretation procedure,” in Atlas of Seismic Stratigraphy, A. W. Bally, Ed., vol. 27, pp. 1–10, American Association of Petroleum Geologists, 1987.
[3]  J. C. van Wagoner, R. M. Mitchum, K. M. Campion, and V. D. Rahmanian, “Siliciclastic sequence stratigraphy in well logs, cores, and outcrops: concepts for high-resolution correlation of time and facies,” American Association of Petroleum Geologists, Methods in Exploration Series, vol. 7, p. 55, 1990.
[4]  L. Pervinquière, étude géologique de la Tunisie centrale, Thèse de docteur, Paris, France, 1903.
[5]  Berthe, “Stratigraphie du Crétacé moyen et supérieur de la Tunisie,” rapport inédit SEREPT, 1949.
[6]  E. Schijfsma, “La position stratigraphique de Globotruncana helvetica Bolli en Tunisie,” Micropaleontology, vol. 1, pp. 321–334, 1955.
[7]  P. F. Burollet, A. Dumestre, D. Keppel, and A. Salvador, “Unités stratigraphiques en Tunisie centrale,” in Proceedings of the 19ème Congrès de Géologie, Alger, 1952.
[8]  P. F. Burollet, “Contribution a l'étude stratigraphique de la Tunisie centrale,” Annales des Mines et de la Geologie, no. 18, p. 350, 1956.
[9]  F. Robaszynski, M. Caron, C. Dupuis, et al., “A tentative integrated stratigraphy in the Turonian of Central Tunisia: formations, zones and sequential stratigraphy in the Kalaat Senan area,” Bulletin des Centre de Recherches Exploration-Production Elf-Aquitaine, vol. 14, pp. 213–384, 1990.
[10]  A. L. Maamouri, D. Zaghbib-Turki, M. F. Matmati, M. Chikhaoui, and J. Salaj, “La formation bahloul en tunisie centro-septentrionale: variations latérales, nouvelle datation et nouvelle interprétation en terme de stratigraphie séquentielle,” Journal of African Earth Sciences, vol. 18, no. 1, pp. 37–50, 1994.
[11]  J. Hardenbol, M. Caron, F. Amédro, C. Dupuis, and F. Robaszynski, “The Cenomanian-Turonian boundary in central Tunisia in the context of a sequence-stratigraphic interpretation,” Cretaceous Research, vol. 14, no. 4-5, pp. 449–454, 1993.
[12]  S. Luning, S. Kolonic, E. M. Belhaj, et al., “An integrated depositional model for the Cenomanian-Turonian organic-rich strata in North Africa,” Earth Science Reviews, vol. 64, no. 1-2, pp. 51–117, 2004.
[13]  M. Soua, “Time series analysis (orbital cycles) of the uppermost Cenomanian-Lower Turonian sequence on the southern Tethyan margin using foraminifera,” Geologica Carpathica, vol. 61, no. 2, pp. 111–120, 2010.
[14]  M. Soua, “Siliceous and organic-rich sedimentation during the Cenomanian-Turonian Oceanic Anoxic Event (OAE2) on the northern margin of Africa: an evidence from the Bargou area,” Arabian Journal of Geosciences. In press.
[15]  M. Soua, D. Zaghbib-Turki, and L. O'Dogherty, “Radiolarian biotic responses to the Latest Cenomanian global event across the southern Tethyan margin (Tunisia),” in Proceeding of the 10th Exploration and Production Conference, vol. 26, pp. 195–216, 2006.
[16]  M. M. Turki, Polycinématique et contr?le sédimentaire associés sur la cicatrice de Zaghouan-Nebhana, Thèse Doctorat es Sience, Tunis, 1985.
[17]  C. Martinez and R. Truillet, “évolution structurale et paléogéographie de la Tunisie,” Memoria de la Societa Italiana de Geologia, vol. 38, pp. 35–45, 1987.
[18]  N. Ben Ayed and C. Viguier, “Interprétation structurale de la Tunisie atlasique,” Comptes Rendus de l'Académie des Sciences, vol. 292, pp. 1445–1448, 1981.
[19]  F. Messaoudi and F. Hammouda, “Evènement structuraux et types de pièges dans l.offshore Nord- Est de la Tunisie,” in Proceedings of the 4th Tunisian Petroleum Exploration Conference, pp. 55–64, Tunis, 1994.
[20]  M. Patriat, N. Ellouz, Z. Dey, J. M. Gaulier, and H. Kilani, “The Hammamet, Gabès and Chotts basins (Tunisia): a review of the subsidence history,” Sedimentary Geology, vol. 156, no. 1–4, pp. 241–262, 2003.
[21]  M. Soua and N. Tribovillard, “Modèle de sédimentation au passage Cénomanien /Turonien pour la formation Bahloul en Tunisie,” Comptes Rendus Geoscience, vol. 339, no. 10, pp. 692–701, 2007.
[22]  M. Soua, O. Echihi, M. Herkat et al., “Structural context of the paleogeography of the Cenomanian-Turonian anoxic event in the eastern Atlas basins of the Maghreb,” Comptes Rendus Geoscience, vol. 341, no. 12, pp. 1029–1037, 2009.
[23]  S. D. Nio, J. Brouwer, D. Smith, M. Jong, and A. B?hm, “Spectral trend attribute analysis: applications in the stratigraphic analysis of wireline logs,” First Break, vol. 23, pp. 71–75, 2005.
[24]  M. Soua, “Biostratigraphie de haute résolution des foraminifères planctoniques du passage Cénomanien Turonien et impact de l.événement anoxique EAO-2 sur ce groupe dans la marge sud de la Téthys, exemple régions de Jerissa et Bargou,” Mémoir de Mastère, Université de Tunis El Manar, 2005.
[25]  A. Mabrouk, I. Jarvis, A. Murphy, et al., “Regional to global correlations of Cenomanian to Eocene sediments: new insights to chemostratigraphic interpretations,” in Proceedings of the 10th Exploration and Production Conference, vol. 26, pp. 26–45, 2006.
[26]  A. M. Murphy, Sediment and groundwater geochemistry of the chalk in Southern England, PhD Thesis, Kingston University, 1998.
[27]  H. M. Stoll and D. P. Schrag, “Sr/Ca variations in Cretaceous carbonates: relation to productivity and sea level changes,” Palaeogeography, Palaeoclimatology, Palaeoecology, vol. 168, pp. 311–336, 2001.
[28]  J. Hardenbol, J. Thierry, M. B. Farley, T. Jacquin, P.-C. De Graciansky, and P. R. Vail, “Cretaceous sequence chronostratigraphy,” in Mesozoic and Cenozoic Sequence Stratigraphy of European Basins, P.-C. De Graciansky, J. Hardenbol, T. Jacquin, and P. R. Vail, Eds., vol. 60, Society of Economic Paleontologists and Mineralogists, Tulsa, Okla, USA, 1998.
[29]  M. Layeb, étude géologique, géochimique et minéralogique, régionale, des faciès riches en matière organique de la formation Bahloul d'age Cénomano-Turonien dans le domaine de la Tunisie Nord-Centrale, Thèse docteur, Tunis, 1990.
[30]  M. Soua, Le Passage Cénomanien-Turonien en Tunisie: biostratigraphie, chimiostratigraphie, cyclostratigraphie et stratigraphie séquentielle, Ph.D. thesis, Université de Tunis El Manar, Tunisia, 2011.
[31]  B. H. Purser, Sédimentation et Diagenèse des Carbonates Néritiques Récents, Tome 1, Editions Technip, Paris, France, 1980.
[32]  P. Morand and S. Dallot, “Variations annuelle et pluriannuelles de quelques espèces du macroplancton cotier de la Mer Ligure (1898–1914),” Rapport Commission International pour l'Exploration Scientifique de la Mer Mediterranee, vol. 29, pp. 295–297, 1985.
[33]  F. Robaszynski, F. Amédro, and M. Caron, “La limite Cénomanien-Turonien et la Formation Bahloul dans quelques localités de Tunisie Centrale,” Cretaceous Research, vol. 14, no. 4-5, pp. 477–486, 1993.
[34]  M. Layeb and H. Belayouni, “La formation Bahloul au Centre et au Nord de la Tunisie un exemple de bonne Roche mère de pétrole à fort intérêt pétrolier,” Mémoires de l'ETAP, no. 3, pp. 489–503, 1989.
[35]  A. J. Nederbragt and A. Fiorentino, “Stratigraphy and palaeoceanography of the Cenomanian-Turonian Boundary event in Oued Mellegue, north-western Tunisia,” Cretaceous Research, vol. 20, no. 1, pp. 47–62, 1999.
[36]  M. Soua, D. Zaghbib-Turki, and N. Tribovillard, “Riverine influxes, warm and humid climatic conditions during the latest Cenomanian-early Turonian Bahloul deposition,” in Proceeding of the 10th Exploration and Production Conference, vol. 27, pp. 201–212, 2008.
[37]  M. Soua, D. Zaghbib-Turki, H. Jemia, J. Smaoui, and A. Boukadi, “Geochemical record of the Cenomanian-Turonian anoxic event in Tunisia: is it correlative ans isochronous to the biotic signal?” Acta Geologica Sinica, vol. 85, no. 6, pp. 1310–1335, 2011.
[38]  P. C. H. Veeken, Seismic Stratigraphy, Basin Analysis and Reservoir Characterisation, Elsevier, Amsterdam, The Netherlands, 2006.
[39]  A. Ando, H. Kawahata, and T. Kakegawa, “Sr / Ca ratios as indicators of varying modes of pelagic carbonate diagenesis in the ooze, chalk and limestone realms,” Sedimentary Geology, vol. 191, no. 1-2, pp. 37–53, 2006.
[40]  H. M. Stoll and D. P. Schrag, “High-resolution stable isotope records from the upper cretaceous rocks of Italy and Spain: glacial episodes in a greenshouse planet?” Bulletin of the Geological Society of America, vol. 112, no. 2, pp. 308–319, 2000.
[41]  H. Accarie, F. Robaszynski, F. Amédro, and M. Caron, “Stratigraphie événementielle au passage Cénomanien-Turonien dans le secteur occidental de la plateforme de Tunisie centrale (Formation Bahloul, région Kalaat Senen),” in Proceedings of 40 ththe Annales des Mines et de la Géologie, pp. 63–80, les Septièmes Journées de la Géologie Tunisienne, Tunis, 1999.
[42]  M. Caron, S. Dall'Agnolo, H. Accarie et al., “High-resolution stratigraphy of the Cenomanian-Turonian boundary interval at Pueblo (USA) and wadi Bahloul (Tunisia): stable isotope and bio-events correlation,” Geobios, vol. 39, no. 2, pp. 171–200, 2006.
[43]  S. Razgallah, J. Philip, G. Thomel et al., “La limite Cénomanien-Turonien en Tunisie centrale et méridionale: biostratigraphie et paléoenvironnements,” Cretaceous Research, vol. 15, no. 5, pp. 507–533, 1994.
[44]  H. Abdallah and C. Meister, “The Cenomanian-Turonian boundary in the Gafsa-Chott area (southern part of central Tunisia): biostratigraphy, palaeoenvironments,” Cretaceous Research, vol. 18, no. 2, pp. 197–236, 1997.
[45]  H. Abdallah, S. Sassi, C. Meister, and R. Souissi, “Sequence stratigraphy and paleogeography at the Cenomanian-Turonian boundary in the Gafsa-Chotts region, central Tunisia,” Cretaceous Research, vol. 21, no. 1, pp. 35–106, 2000.
[46]  H. M. Stoll and D. P. Schrag, “Evidence for glacial control of rapid sea level changes in the early Cretaceous,” Science, vol. 272, pp. 1771–1774, 1996.
[47]  M. Renard, “Géochimie des Carbonates Pélagiques. Mis en évidence des Fluctuations de la Composition des Eaux Océaniques depuis 140 Ma,” Essai de Chimiostratigraphie. Doc. BRGM, 85, p. 650, 1985.
[48]  J. M. Hancock, “Sea-level changes in the British region during the Late Cretaceous,” Proceedings of the Geologists Association, vol. 100, no. 4, pp. 565–594, 1989.
[49]  J. M. Hancock, “Transatlantic correlations in the Campanian-Maastrichtian stages by eustatic changes of sea-level,” High Resolution Stratigraphy, pp. 241–256, 1993.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413