全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Water level forecasting using a hybrid algorithm of artificial neural networks and local Kalman filtering

DOI: 10.1177/1475090217727135

Keywords: Water level forecasting,artificial neural network model,Kalman filtering,hybrid algorithm,Yangtze River

Full-Text   Cite this paper   Add to My Lib

Abstract:

The dynamic processes in the tidal reaches of the Yangtze River lead to the complexity of short-term water level forecasting. Historical data of daily water level are obtained for the lower reaches (Anqing–Wuhu–Nanjing) of the Yangtze River. Stationary time series of water level is derived by making the first-order difference with the raw datasets. An artificial neural network–Kalman hybrid model is proposed for water level forecasting, in which the Kalman filtering is introduced for partial data reconstruction. The model is calibrated with the hydrologic daily water level data of years 2014–2016 for MaAnshan station. Comparing with the traditional artificial neural network model, daily water level predictions are improved by the hybrid algorithm. Discrepancies appear under the circumstance of sharp variations of water level observations. Moreover, the implementation strategy of Kalman filtering algorithm is explored, which indicates the superiority of local Kalman filtering

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133