全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Bayesian hidden Markov models for delineating the pathology of Alzheimer’s disease

DOI: 10.1177/0962280217748675

Keywords: Bayesian P-splines,correlated random effects,hidden Markov models,MCMC methods,semiparametric models

Full-Text   Cite this paper   Add to My Lib

Abstract:

Alzheimer’s disease is a firmly incurable and progressive disease. The pathology of Alzheimer’s disease usually evolves from cognitive normal, to mild cognitive impairment, to Alzheimer’s disease. The aim of this paper is to develop a Bayesian hidden Markov model to characterize disease pathology, identify hidden states corresponding to the diagnosed stages of cognitive decline, and examine the dynamic changes of potential risk factors associated with the cognitive normal–mild cognitive impairment–Alzheimer’s disease transition. The hidden Markov model framework consists of two major components. The first one is a state-dependent semiparametric regression for delineating the complex associations between clinical outcomes of interest and a set of prognostic biomarkers across neurodegenerative states. The second one is a parametric transition model, while accounting for potential covariate effects on the cross-state transition. The inter-individual and inter-process differences are taken into account via correlated random effects in both components. Based on the Alzheimer’s Disease Neuroimaging Initiative data set, we are able to identify four states of Alzheimer’s disease pathology, corresponding to common diagnosed cognitive decline stages, including cognitive normal, early mild cognitive impairment, late mild cognitive impairment, and Alzheimer’s disease and examine the effects of hippocampus, age, gender, and APOE- ε 4 on degeneration of cognitive function across the four cognitive states

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133