全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Study on the fuzzy proportional–integral–derivative direct torque control strategy without flux linkage observation for brushless direct current motors

DOI: 10.1177/1729881419853141

Keywords: Brushless DC motor,fluxless linkage observation,direct torque control,adaptive fuzzy PID,MATLAB/Simulink,DSP2812

Full-Text   Cite this paper   Add to My Lib

Abstract:

Considering the difficulty in setting and observing the flux linkage in the existing direct torque control for the brushless direct current motor, which is the cumbersome torque calculation method in direct torque control systems without flux linkage observation, the torque observation, voltage vector selection, and speed loop were studied further in such systems. The fuzzy proportional–integral–derivative direct torque control strategy is presented without flux linkage observation. In terms of torque observation, the cumbersome counter electromotive force calculation method was abandoned, and observation was made combining the three-phase current and Hall signal. In terms of optimal choice of voltage vector, the voltage vector selection table was built using the voltage hysteresis output and Hall signal. In terms of rotation speed control, the adaptive fuzzy proportional–integral–derivative was used to replace the traditional proportional–integral–derivative for the proportional–integral–derivative parameter self-adjustment. A control system simulation model was set up in MATLAB/Simulink for simulation verification. A hardware experimental platform was set up using DSP2812 as the main control board for experimental verification. The research results show that the fuzzy proportional–integral–derivative direct torque control without flux linkage observation further increased the dynamic response rate of the motor speed and reduced the electromagnetic torque ripple amplitude; thus, it is more suitable for application in high-precision and high-stability systems

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413