全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Model

DOI: 10.1177/1729881419853713

Keywords: Sensorless collision detection,human–robot interaction,dynamics identification,model uncertainty,Lasso

Full-Text   Cite this paper   Add to My Lib

Abstract:

This article presents a novel model-based sensorless collision detection scheme for human–robot interaction. In order to recognize external impacts exerted on the manipulator with sensitivity and robustness without additional exteroceptive sensors, the method based on torque residual, which is the difference between nominal and actual torque, is adopted using only motor-side information. In contrast to classic dynamics identification procedure which requires complicated symbolic derivation, a sequential dynamics identification was proposed by decomposing robot dynamics into gravity and friction item, which is simple in symbolic expression and easy to identify with least squares method, and the remaining structure-complex torque effect. Subsequently, the remaining torque effect was reformulated to overcome the structural complexity of original expression and experimentally recovered using a machine learning approach named Lasso while keeping the involving candidates number reduced to a certain degree. Moreover, a state-dependent dynamic threshold was developed to handle the abnormal peaks in residual due to model uncertainties. The effectiveness of the proposed method was experimentally validated on a conventional industrial manipulator, which illustrates the feasibility and simplicity of the collision detection method

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413