全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Non-Alcoholic Fatty Liver Disease: The Bile Acid-Activated Farnesoid X Receptor as an Emerging Treatment Target

DOI: 10.1155/2012/934396

Full-Text   Cite this paper   Add to My Lib

Abstract:

Non-alcoholic fatty liver disease (NAFLD) is currently evolving as the most common liver disease worldwide. It may progress to liver cirrhosis and liver cancer and is poised to represent the most common indication for liver transplantation in the near future. The pathogenesis of NAFLD is multifactorial and not fully understood, but it represents an insulin resistance state characterized by a cluster of cardiovascular risk factors including obesity, dyslipidemia, hyperglycemia, and hypertension. Importantly, NAFLD also has evolved as independent risk factor for cardiovascular disease. Unfortunately thus far no established treatment does exist for NAFLD. The bile acid-activated nuclear farnesoid X receptor (FXR) has been shown to play a role not only in bile acid but also in lipid and glucose homeostasis. Specific targeting of FXR may be an elegant and very effective way to readjust dysregulated nuclear receptor-mediated metabolic pathways. This review discusses the body's complex response to the activation of FXR with its beneficial actions but also potential undesirable side effects. 1. Introduction One characteristic of our modern civilization is the easy and unlimited access to unhealthy and caloric dense food. A typical American diet furnishes the liver with ~20?g of fat each day, equivalent to one-half of the total triglyceride content of the liver. In combination with little need for physical activity due to technological advances, one consequence of our sedentary and excessive lifestyle is non-alcoholic fatty liver disease (NAFLD). NAFLD is a major health problem affecting up to 60 million Americans and evolving as the most common liver disease worldwide [1, 2]. This is several-fold higher than other common chronic liver diseases such as hepatitis C and alcohol-related liver disease. While the majority of subjects with NAFLD are obese, the condition can occur in the absence of obesity or other features of the metabolic syndrome. In patients with diabetes and morbid obesity the prevalence of NAFLD has been shown to be as high as 62% and 96%, respectively [3, 4]. The earliest stage of NAFLD is fatty liver that is defined as the presence of cytoplasmic triglyceride droplets in more than 5% of hepatocytes [5]. Although often self-limited, in 12–40% it can progress to non-alcoholic steatohepatitis (NASH) [6]. NASH is distinguished from simple fatty liver by the presence of hepatocyte injury such as hepatocyte ballooning and apoptosis, an inflammatory infiltrate, and/or collagen deposition. Over a time period of 10–15 years, 15% of patients with NASH

References

[1]  L. A. Adams and P. Angulo, “Recent concepts in non-alcoholic fatty liver disease,” Diabetic Medicine, vol. 22, no. 9, pp. 1129–1133, 2005.
[2]  G. Targher, C. P. Day, and E. Bonora, “Risk of cardiovascular disease in patients with nonalcoholic fatty liver disease,” New England Journal of Medicine, vol. 363, no. 14, pp. 1341–1350, 2010.
[3]  S. A. Giday, Z. Ashiny, T. Naab, D. Smoot, and A. Banks, “Frequency of nonalcoholic fatty liver disease and degree of hepatic steatosis in African-American patients,” Journal of the National Medical Association, vol. 98, no. 10, pp. 1613–1615, 2006.
[4]  S. Jimba, T. Nakagami, M. Takahashi et al., “Prevalence of non-alcoholic fatty liver disease and its association with impaired glucose metabolism in Japanese adults,” Diabetic Medicine, vol. 22, no. 9, pp. 1141–1145, 2005.
[5]  L. S. Szczepaniak, P. Nurenberg, D. Leonard et al., “Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population,” American Journal of Physiology, Endocrinology and Metabolism, vol. 288, pp. E462–E468, 2005.
[6]  N. M. W. de Alwis and C. P. Day, “Non-alcoholic fatty liver disease: the mist gradually clears,” Journal of Hepatology, vol. 48, no. 1, pp. S104–S112, 2008.
[7]  G. Targher and G. Arcaro, “Non-alcoholic fatty liver disease and increased risk of cardiovascular disease,” Atherosclerosis, vol. 191, no. 2, pp. 235–240, 2007.
[8]  M. Ekstedt, L. E. Franzén, U. L. Mathiesen et al., “Long-term follow-up of patients with NAFLD and elevated liver enzymes,” Hepatology, vol. 44, no. 4, pp. 865–873, 2006.
[9]  D. E. Kleiner, E. M. Brunt, M. Van Natta et al., “Design and validation of a histological scoring system for nonalcoholic fatty liver disease,” Hepatology, vol. 41, no. 6, pp. 1313–1321, 2005.
[10]  S. Li, M. S. Brown, and J. L. Goldstein, “Bifurcation of insulin signaling pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 8, pp. 3441–3446, 2010.
[11]  J. D. Horton, J. L. Goldstein, and M. S. Brown, “SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver,” Journal of Clinical Investigation, vol. 109, no. 9, pp. 1125–1131, 2002.
[12]  K. Uyeda and J. J. Repa, “Carbohydrate response element binding protein, ChREBP, a transcription factor coupling hepatic glucose utilization and lipid synthesis,” Cell Metabolism, vol. 4, no. 2, pp. 107–110, 2006.
[13]  R. Zimmermann, J. G. Strauss, G. Haemmerle et al., “Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase,” Science, vol. 306, no. 5700, pp. 1383–1386, 2004.
[14]  J. C. Cohen, J. D. Horton, and H. H. Hobbs, “Human fatty liver disease: old questions and new insights,” Science, vol. 332, no. 6037, pp. 1519–1523, 2011.
[15]  M. Fuchs and A. J. Sanyal, “Non-alcoholic fatty liver disease: a pathophysiological perspective,” in The liver. Biology and Pathobiology, I. M. Arias, H. J. Alter, J. L. Boyer, et al., Eds., pp. 719–741, Wiley-Blackwell, Pa, USA, 2009.
[16]  S. K. Satapathy and A. J. Sanyal, “Novel treatment modalities for nonalcoholic steatohepatitis,” Trends in Endocrinology and Metabolism, vol. 21, no. 11, pp. 668–675, 2010.
[17]  M. Arrese and S. J. Karpen, “Nuclear receptors, inflammation, and liver disease: insights for cholestatic and fatty liver diseases,” Clinical Pharmacology and Therapeutics, vol. 87, no. 4, pp. 473–478, 2010.
[18]  E. Y. Hsia, M. L. Goodson, J. X. Zou, M. L. Privalsky, and H. -W. Chen, “Nuclear receptor coregulators as a new paradigm for therapeutic targeting,” Advanced Drug Delivery Reviews, vol. 62, no. 13, pp. 1227–1237, 2010.
[19]  W. Berrabah, P. Aumercier, P. Lefebvre, and B. Staels, “Control of nuclear receptor activities in metabolism by post-translational modifications,” FEBS Letters, vol. 585, no. 11, pp. 1640–1650, 2011.
[20]  W. Seol, H. S. Choi, and D. D. Moore, “Isolation of proteins that interact specifically with the retinoid X receptor: two novel orphan receptors,” Molecular Endocrinology, vol. 9, no. 1, pp. 72–85, 1995.
[21]  B. M. Forman, E. Goode, J. Chen et al., “Identification of a nuclear receptor that is activated by farnesol metabolites,” Cell, vol. 81, no. 5, pp. 687–693, 1995.
[22]  M. Makishima, A. Y. Okamoto, J. J. Repa et al., “Identification of a nuclear receptor for bite acids,” Science, vol. 284, no. 5418, pp. 1362–1365, 1999.
[23]  D. J. Parks, S. G. Blanchard, R. K. Bledsoe et al., “Bile acids: natural ligands for an orphan nuclear receptor,” Science, vol. 284, no. 5418, pp. 1365–1368, 1999.
[24]  H. Wang, J. Chen, K. Hollister, L. C. Sowers, and B. M. Forman, “Endogenous bile acids are ligands for the nuclear receptor FXR/BAR,” Molecular Cell, vol. 3, no. 5, pp. 543–553, 1999.
[25]  Y. Zhang, H. R. Kast-Woelbern, and P. A. Edwards, “Natural structural variants of the nuclear receptor farnesoid X receptor affect transcriptional activation,” Journal of Biological Chemistry, vol. 278, no. 1, pp. 104–110, 2003.
[26]  C. J. Sinal, M. Tohkin, M. Miyata, J. M. Ward, G. Lambert, and F. J. Gonzalez, “Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis,” Cell, vol. 102, no. 6, pp. 731–744, 2000.
[27]  R. M. Gadaleta, K. J. van Erpecum, B. Oldenburg et al., “Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease,” Gut, vol. 60, no. 4, pp. 463–472, 2011.
[28]  P. Vavassori, A. Mencarelli, B. Renga, E. Distrutti, and S. Fiorucci, “The bile acid receptor FXR is a modulator of intestinal innate immunity,” Journal of Immunology, vol. 183, no. 10, pp. 6251–6261, 2009.
[29]  F. Yang, X. Huang, T. Yi, Y. Yen, D. D. Moore, and W. Huang, “Spontaneous development of liver tumors in the absence of the bile acid receptor farnesoid X receptor,” Cancer Research, vol. 67, no. 3, pp. 863–867, 2007.
[30]  S. Modica, S. Murzilli, L. Salvatore, D. R. Schmidt, and A. Moschetta, “Nuclear bile acid receptor FXR protects against intestinal tumorigenesis,” Cancer Research, vol. 68, no. 23, pp. 9589–9594, 2008.
[31]  A. F. Hofmann and D. M. Small, “Detergent properties of bile salts: correlation with physiological function,” Annual Review of Medicine, vol. 18, pp. 333–376, 1967.
[32]  P. B. Hylemon, H. Zhou, W. M. Pandak, S. Ren, G. Gil, and P. Dent, “Bile acids as regulatory molecules,” Journal of Lipid Research, vol. 50, no. 8, pp. 1509–1520, 2009.
[33]  M. Trauner and E. Halilbasic, “Nuclear receptors as new perspective for the management of liver diseases,” Gastroenterology, vol. 140, no. 4, pp. 1120–1125, 2011.
[34]  S. M. Grundy, E. H. Ahrens, and G. Salen, “Interruption of the enterohepatic circulation of bile acids in man: comparative effects of cholestyramine and ileal exclusion on cholesterol metabolism,” The Journal of Laboratory and Clinical Medicine, vol. 78, no. 1, pp. 94–121, 1971.
[35]  P. J. Nestel and S. M. Grundy, “Changes in plasma triglyceride metabolism during withdrawal of bile,” Metabolism: Clinical and Experimental, vol. 25, no. 11, pp. 1259–1268, 1976.
[36]  B. Angelin, K. Einarsson, K. Hellstrom, and B. Leijd, “Effects of cholestyramine and chenodeoxycholic acid on the metabolism of endogenous triglyceride in hyperlipoproteinemia,” Journal of Lipid Research, vol. 19, no. 8, pp. 1017–1024, 1978.
[37]  M. Watanabe, S. M. Houten, L. Wang et al., “Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c,” Journal of Clinical Investigation, vol. 113, no. 10, pp. 1408–1418, 2004.
[38]  Y. Zhang, L. W. Castellani, C. J. Sinal, F. J. Gonzalez, and P. A. Edwards, “Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) regulates triglyceride metabolism by activation of the nuclear receptor FXR,” Genes and Development, vol. 18, no. 2, pp. 157–169, 2004.
[39]  A. Sirvent, T. Claudel, G. Martin et al., “The farnesoid X receptor induces very low density lipoprotein receptor gene expression,” FEBS Letters, vol. 566, no. 1–3, pp. 173–177, 2004.
[40]  A. M. Anisfeld, H. R. Kast-Woelbern, M. E. Meyer et al., “Syndecan-1 expression is regulated in an isoform-specific manner by the farnesoid-X receptor,” Journal of Biological Chemistry, vol. 278, no. 22, pp. 20420–20428, 2003.
[41]  J. Fruchart-Najib, E. Baugé, L. -S. Niculescu et al., “Mechanism of triglyceride lowering in mice expressing human apolipoprotein A5,” Biochemical and Biophysical Research Communications, vol. 319, no. 2, pp. 397–404, 2004.
[42]  H. R. Kast, C. M. Nguyen, C. J. Sinal et al., “Farnesoid X-activated receptor induces apolipoprotein C-II transcription: a molecular mechanism linking plasma triglyceride levels to bile acids,” Molecular Endocrinology, vol. 15, no. 10, pp. 1720–1728, 2001.
[43]  D. Kardassis, A. Roussou, P. Papakosta, K. Boulias, I. Talianidis, and V. I. Zannis, “Synergism between nuclear receptors bound to specific hormone response elements of the hepatic control region-1 and the proximal apolipoprotein C-II promoter mediate apolipoprotein C-II gene regulation by bile acids and retinoids,” Biochemical Journal, vol. 372, no. 2, pp. 291–304, 2003.
[44]  T. Claudel, Y. Inoue, O. Barbier et al., “Farnesoid X receptor agonists suppress hepatic apolipoprotein CIII expression,” Gastroenterology, vol. 125, no. 2, pp. 544–555, 2003.
[45]  I. P. Torra, T. Claudel, C. Duval, V. Kosykh, J. C. Fruchart, and B. Staels, “Bile acids induce the expression of the human peroxisome proliferator-activated receptor α gene via activation of the farnesoid X receptor,” Molecular Endocrinology, vol. 17, no. 2, pp. 259–272, 2003.
[46]  M. Fuchs, B. Ivandic, O. Müller et al., “Biliary cholesterol hypersecretion in gallstone-susceptible mice is associated with hepatic up-regulation of the high-density lipoprotein receptor SRBI,” Hepatology, vol. 33, no. 6, pp. 1451–1459, 2001.
[47]  B. Zhao, J. Song, and S. Ghosh, “Hepatic overexpression of cholesteryl ester hydrolase enhances cholesterol elimination and in vivo reverse cholesterol transport,” Journal of Lipid Research, vol. 49, no. 10, pp. 2212–2217, 2008.
[48]  M. Fuchs, F. Lammert, D. Q. H. Wang, B. Paigen, M. C. Carey, and D. E. Cohen, “Sterol carrier protein 2 participates in hypersecretion of biliary cholesterol during gallstone formation in genetically gallstone-susceptible mice,” Biochemical Journal, vol. 336, no. 1, pp. 33–37, 1998.
[49]  K. Lu, M. H. Lee, S. Hazard et al., “Two genes that map to the STSL locus cause sitosterolemia: genomic structure and spectrum of mutations involving sterolin-1 and sterolin-2, encoded by ABCG5 and ABCG8, respectively,” American Journal of Human Genetics, vol. 69, no. 2, pp. 278–290, 2001.
[50]  G. Lambert, M. J. A. Amar, G. Guo, H. B. Brewer, F. J. Gonzalez, and C. J. Sinal, “The farnesoid X-receptor is an essential regulator of cholesterol homeostasis,” Journal of Biological Chemistry, vol. 278, no. 4, pp. 2563–2570, 2003.
[51]  T. Claudel, E. Sturm, H. Duez et al., “Bile acid-activated nuclear receptor FXR suppresses apolipoprotein A-I transcription via a negative FXR response element,” Journal of Clinical Investigation, vol. 109, no. 7, pp. 961–971, 2002.
[52]  A. Gutierrez, E. P. Ratliff, A. M. Andres, X. Huang, W. L. McKeehan, and R. A. Davis, “Bile acids decrease hepatic paraoxonase 1 expression and plasma high-density lipoprotein levels via FXR-mediated signaling of FGFR4,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 2, pp. 301–306, 2006.
[53]  D. M. Shih, H. R. Kast-Woelbern, J. Wong, Y. R. Xia, P. A. Edwards, and A. J. Lusis, “A role for FXR and human FGF-19 in the repression of paraoxonase-1 gene expression by bile acids,” Journal of Lipid Research, vol. 47, no. 2, pp. 384–392, 2006.
[54]  N. L. Urizar, D. H. Dowhan, and D. D. Moore, “The farnesoid X-activated receptor mediates bile acid activation of phospholipid transfer protein gene expression,” Journal of Biological Chemistry, vol. 275, no. 50, pp. 39313–39317, 2000.
[55]  M. L. Hubbert, Y. Zhang, F. Y. Lee, and P. A. Edwards, “Regulation of hepatic insig-2 by the farnesoid X receptor,” Molecular Endocrinology, vol. 21, no. 6, pp. 1359–1369, 2007.
[56]  C. Langhi, C. Le May, S. Kourimate et al., “Activation of the farnesoid X receptor represses PCSK9 expression in human hepatocytes,” FEBS Letters, vol. 582, no. 6, pp. 949–955, 2008.
[57]  A. Garg and S. M. Grundy, “Cholestyramine therapy for dyslipidemia in non-insulin-dependent diabetes mellitus. A short-term, double-blind, crossover trial,” Annals of Internal Medicine, vol. 121, no. 6, pp. 416–422, 1994.
[58]  D. Duran-Sandoval, G. Mautino, G. Martin et al., “Glucose regulates the expression of the farnesoid X receptor in liver,” Diabetes, vol. 53, no. 4, pp. 890–898, 2004.
[59]  B. Cariou, “The farnesoid X receptor (FXR) as a new target in non-alcoholic steatohepatitis,” Diabetes & Metabolism, vol. 34, no. 6, pp. 685–691, 2008.
[60]  K. Ma, P. K. Saha, L. Chan, and D. D. Moore, “Farnesoid X receptor is essential for normal glucose homeostasis,” Journal of Clinical Investigation, vol. 116, no. 4, pp. 1102–1109, 2006.
[61]  B. Cariou, K. van Harmelen, D. Duran-Sandoval et al., “The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice,” Journal of Biological Chemistry, vol. 281, no. 16, pp. 11039–11049, 2006.
[62]  Y. Zhang, F. Y. Lee, G. Barrera, et al., “Activation of the nuclear receptor FXR improve hyperglycemia and hyperlipidemia in a diabetic mouse,” Proceedings of the National Academy of Sciences, vol. 103, pp. 1006–1011, 2006.
[63]  A. Nguyen and B. Bouscarel, “Bile acids and signal transduction: role in glucose homeostasis,” Cellular Signalling, vol. 20, no. 12, pp. 2180–2197, 2008.
[64]  Y. D. Wang, W. D. Chen, M. Wang, D. Yu, B. M. Forman, and W. Huang, “Farnesoid X receptor antagonizes nuclear factor κB in hepatic inflammatory response,” Hepatology, vol. 48, no. 5, pp. 1632–1643, 2008.
[65]  T. Inagaki, A. Moschetta, Y. K. Lee et al., “Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 10, pp. 3920–3925, 2006.
[66]  S. Fiorucci, E. Antonelli, G. Rizzo et al., “The nuclear receptor SHP mediates inhibition of hepatic stellate cells by FXR and protects against liver fibrosis,” Gastroenterology, vol. 127, no. 5, pp. 1497–1512, 2004.
[67]  S. Zhang, J. Wang, Q. Liu, and D. C. Harnish, “Farnesoid X receptor agonist WAY-362450 attenuates liver inflammation and fibrosis in murine model of non-alcoholic steatohepatitis,” Journal of Hepatology, vol. 51, no. 2, pp. 380–388, 2009.
[68]  B. Kong, J. P. Luyendyk, O. Tawfik, and G. L. Guo, “Faresoid X receptor deficiency induced nonalcoholic steatohepatitis in low-density lipoprotein receptor-knockout mice fed a high-fat diet,” Journal of Pharmacology and Experimental Therapeutics, vol. 328, pp. 116–122, 2009.
[69]  J. Li, Y. Zhang, R. Kuruba et al., “Roles of microRNA-29a in the antifibrotic effect of farnesoid X receptor in hepatic stellate cells,” Molecular Pharmacology, vol. 80, no. 1, pp. 191–200, 2011.
[70]  P. Fickert, A. Fuchsbichler, T. Moustafa et al., “Farnesoid X receptor critically determines the fibrotic response in mice but is expressed to a low extent in human hepatic stellate cells and periductal myofibroblasts,” American Journal of Pathology, vol. 175, no. 6, pp. 2392–2405, 2009.
[71]  F. He, J. Li, Y. Mu et al., “Downregulation of endothelin-1 by farnesoid X receptor in vascular endothelial cells,” Circulation Research, vol. 98, no. 2, pp. 192–199, 2006.
[72]  P. Qin, X. Tang, M. M. Elloso, and D. C. Harnish, “Bile acids induce adhesion molecule expression in endothelial cells through activation of reactive oxygen species, NF-κB, and p38,” American Journal of Physiology, Heart and Circulatory Physiology, vol. 291, no. 2, pp. H741–H747, 2006.
[73]  Y. Zhang, X. Wang, C. Vales, et al., “FXR deficiency reduces atherosclerosis in Ldlr -/- mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, pp. 2316–2321, 2006.
[74]  E. A. Hanniman, G. Lambert, T. C. McCarthy, and C. J. Sinal, “Loss of functional farnesoid X receptor increases atherosclerotic lesions in apolipoprotein E-deficient mice,” Journal of Lipid Research, vol. 46, no. 12, pp. 2595–2604, 2005.
[75]  H. B. Hartman, S. J. Gardell, C. J. Petucci, S. Wang, J. A. Krueger, and M. J. Evans, “Activation of farnesoid X receptor prevents atherosclerotic lesion formation in LDLR-/- and apoE -/- mice,” Journal of Lipid Research, vol. 50, no. 6, pp. 1090–1100, 2009.
[76]  A. Mencarelli, B. Renga, E. Distrutti, and S. Fiorucci, “Antiatherosclerotic effect of farnesoid X receptor,” American Journal of Physiology, Heart and Circulatory Physiology, vol. 296, no. 2, pp. H272–H281, 2009.
[77]  C. A. Hogarth, A. Roy, and D. L. Ebert, “Genomic evidence for the absence of a functional cholesteryl ester transfer protein gene in mice and rats,” Comparative Biochemistry and Physiology. B, vol. 135, no. 2, pp. 219–229, 2003.
[78]  L. M. Harada, A. J.F. Carrilho, H. C.F. Oliveira, E. R. Nakandakare, and E. C.R. Quint?o, “Regulation of hepatic cholesterol metabolism in CETP+/-/ LDLr+/- mice by cholesterol feeding and by drugs (cholestyramine and lovastatin) that lower plasma cholesterol,” Clinical and Experimental Pharmacology and Physiology, vol. 33, no. 12, pp. 1209–1215, 2006.
[79]  S. Cipriani, A. Mencarelli, G. Palladino, and S. Fiorucci, “FXR activation reverses insulin resistance and lipid abnormalities and protects against liver steatosis in Zucker (fa/fa) obese rats,” Journal of Lipid Research, vol. 51, no. 4, pp. 771–784, 2010.
[80]  A. J. Sanyal, S. Mudaliar, R. R. Henry, et al., “A new therapy for nonalcoholic fatty liver disease and diabetes? INT-747–the first FXR hepatic therapeutic study,” Hepatology, vol. 50, p. 389A, 2009.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133