全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Reproductive Biology of the Softshell Clam, Mya arenaria, in Ireland, and the Possible Impacts of Climate Variability

DOI: 10.1155/2012/908163

Full-Text   Cite this paper   Add to My Lib

Abstract:

Little is known about the biology of the softshell clam in Europe, despite it being identified as a potential species to culture for food in the future. Monthly samples of the softshell clam, Mya arenaria, were collected intertidally from Co. Wexford, Ireland, over a period of sixteen months. The mean weight of sampled individuals was 7 4 ± 4 . 9 ?g and mean length was 8 . 2 ± 0 . 2 ?cm. Histological examination revealed a female-to-male ratio of 1?:?1.15. In 2010, M. arenaria at this site matured over the summer months, with both sexes either ripe or spawning by August. A single spawning event was recorded in 2010, completed by November. Two unusually cold winters, followed by a warmer-than-average spring, appear to have affected M. arenaria gametogenesis in this area, potentially affecting the time of spawning, fertilisation success, and recruitment of this species. No hermaphrodites were observed in the samples collected, nor were any pathogens observed. Timing of development and spawning is compared with the coasts of eastern North America and with other European coasts. 1. Introduction The softshell clam, Mya arenaria, is widely distributed in coastal and intertidal soft substrates in boreal waters and is often a dominant species in benthic communities [1]. Mya arenaria currently occupies a wide geographical range in the northern hemisphere, on the east and west coasts of North America, where it is commercially important for fisheries and aquaculture [2, 3]. In 2008 alone, the National Marine Fisheries Service of USA reported approximately 1.73 million kg of M. arenaria harvested, worth in excess of €16 million [4]. The present European distribution of M. arenaria ranges from Northern Norway to Portugal, including the Black Sea [5–7], with recent reports of its introduction to the Mediterranean Sea [4]. Mya arenaria is rarely collected for food or bait in European waters, but it is an ecologically important food source for fish such as plaice (Pleuronectes platessa) and flounder (Platichtys flesus) [6], shrimp, sandworms, crabs, and wading birds such as oystercatchers (Haematopus ostralegus) and curlew (Numenius arquata) [8]. Due to the softshell clams’ ability to survive and reproduce in a variety of differing areas such as mud and gravel, it could be an ideal species to culture in European waters in the future. Mya arenaria are widespread around all Irish and British coasts [9, 10], but little information is currently available on reproductive biology in these areas. Previous work in the United States has revealed that the sexes of M. arenaria

References

[1]  R. Lasota, H. Hummel, and M. Wolowicz, “Genetic diversity of European populations of the invasive soft-shell clam Mya arenaria (Bivalvia),” Journal of the Marine Biological Association of the United Kingdom, vol. 84, no. 5, pp. 1051–1056, 2004.
[2]  B. F. Beal, “Adding value to live, commercial size soft-shell clams (Mya arenaria L.) in Maine, USA: results from repeated, small-scale, field impoundment trials,” Aquaculture, vol. 210, no. 1–4, pp. 119–135, 2002.
[3]  L. B. Connell, S. P. MacQuarrie, B. M. Twarog, M. Iszard, and V. M. Bricelj, “Population differences in nerve resistance to paralytic shellfish toxins in softshell clam, Mya arenaria, associated with sodium channel mutations,” Marine Biology, vol. 150, no. 6, pp. 1227–1236, 2007.
[4]  S. Weston and J. K. Buttner, “Softshell clam culture: basic biology and general culture considerations,” NRAC Publication 201, 2010.
[5]  Y. Zaitsev and V. Mamaev, Marine Biological Diversity in the Black Sea, United Nations Publications, New York, NY, USA, 1997.
[6]  M. Strasser, “Mya arenaria—an ancient invader of the North Sea coast,” Helgoland Marine Research, vol. 52, no. 3, pp. 309–324, 1999.
[7]  A. Conde, J. Novais, and J. Domínguez, “Southern limit of distribution of the soft-shell clam Mya arenaria on the Atlantic East Coast,” Biological Invasions, vol. 12, no. 3, pp. 429–432, 2010.
[8]  L. Zwarts and J. Wanink, “Siphon size and burying depth in deposit- and suspension-feeding benthic bivalves,” Marine Biology, vol. 100, no. 2, pp. 227–240, 1989.
[9]  N. C. Eno, R. A. Clark, and W. G. Sanderson, Non-Native Marine Species in British Waters: A Review and Directory, Joint Nature Conservation Committee, 1997.
[10]  R. M. O'Riordan, C. Moriarty, and D. Murray, “The accidental introduction of marine animals into Ireland,” in Biological Invaders: The Impact of Exotic Species, pp. 95–106, 2002.
[11]  C. Newell and H. Hidu, Species Profiles: Life Histories and Environmental Requirements of Coastal Fish and Invertebrates (North Atlantic): Softshell Clam. [Mya arenaria], Maine Shellfish Research and Development, Damariscotta (USA), Maine Shellfish Research and Development, Damariscotta (USA); Maine University, Orono (USA), Department of Animal and Veterinary Sciences, 1986.
[12]  D. Brousseau, “A comparative study of the reproductive cycle of the soft-shell clam, Mya arenaria in Long Island Sound,” Journal of Shellfish Research, vol. 6, no. 1, pp. 7–16, 1987.
[13]  J. Ropes and A. Stickney, “Reproductive cycle of Mya arenaria in New England,” Biological Bulletin, vol. 128, no. 2, pp. 315–327, 1965.
[14]  H. T. Pfitzenmeyer, “Annual cycle of gametogenesis of the soft-shelled clam, Mya arenaria, at Solomons, Maryland,” Chesapeake Science, vol. 6, no. 1, pp. 52–59, 1965.
[15]  Y. P. Began, “Reproduction and growth of Mya arenaria in the Black Sea,” Biologija Morja, vol. 6, pp. 70–72, 1979.
[16]  C. P. Günther, “Settlement and recruitment of Mya arenaria L. in the Wadden Sea,” Journal of Experimental Marine Biology and Ecology, vol. 159, no. 2, pp. 203–215, 1992.
[17]  J. F. M. F. Cardoso, J. I. Witte, and H. W. van der Veer, “Differential reproductive strategies of two bivalves in the Dutch Wadden Sea,” Estuarine, Coastal and Shelf Science, vol. 84, no. 1, pp. 37–44, 2009.
[18]  P. M?ller and R. Rosenberg, “Recruitment, abundance and production of Mya arenaria and Cardium edule in marine shallow waters, western Sweden,” Ophelia, vol. 22, no. 1, pp. 33–55, 1983.
[19]  S. Munch-Petersen, “An investigation of a population of the soft clam (Mya arenaria L.) in a Danish estuary,” Fiskeridirektoratets Skrifter. Serie Havunders Kelser, vol. 3, pp. 47–73, 1973.
[20]  U. Winther and J. Gray, “The biology of Mya arenaria (Bivalvia) in the eutrophic inner Oslofjord,” Sarsia, vol. 70, no. 1, pp. 1–9, 1985.
[21]  R. Warwick and R. Price, “Macrofauna production in an estuarine mud-flat,” Journal of the Marine Biological Association of the UK, vol. 55, no. 1, pp. 1–18, 1975.
[22]  S. Gauthier-Clerc, J. Pellerin, C. Blaise, and F. Gagné, “Delayed gametogenesis of Mya arenaria in the Saguenay fjord (Canada): a consequence of endocrine disruptors?” Comparative Biochemistry and Physiology, vol. 131, no. 4, pp. 457–467, 2002.
[23]  I. Kr?ncke, H. Reiss, J. D. Eggleton et al., “Changes in North Sea macrofauna communities and species distribution between 1986 and 2000,” Estuarine, Coastal and Shelf Science, vol. 94, no. 1, pp. 1–15, 2011.
[24]  D. Brousseau, “Spawning cycle, fecundity, and recruitment in a population of soft-shell clam, Mya arenaria, from Cape Ann, Massachusetts,” Fishery Bulletin, vol. 76, no. 1, pp. 155–166, 1978.
[25]  C. J. M. Philippart, R. Anadón, R. Danovaro et al., “Impacts of climate change on European marine ecosystems: observations, expectations and indicators,” Journal of Experimental Marine Biology and Ecology, vol. 400, no. 1-2, pp. 52–69, 2011.
[26]  V. Matozzo and M. Marin, “Bivalve immune responses and climate changes: is there a relationship?” Information Systems Journal, vol. 8, pp. 70–77, 2011.
[27]  D. S. Wethey, S. A. Woodin, T. J. Hilbish, S. J. Jones, F. P. Lima, and P. M. Brannock, “Response of intertidal populations to climate: effects of extreme events versus long term change,” Journal of Experimental Marine Biology and Ecology, vol. 400, no. 1-2, pp. 132–144, 2011.
[28]  K. Hiscock, A. Southward, I. Tittley, and S. Hawkins, “Effects of changing temperature on benthic marine life in Britain and Ireland,” Aquatic Conservation, vol. 14, no. 4, pp. 333–362, 2004.
[29]  J. H. Christensen, B. Hewitson, A. Busuioc, et al., “Regional climate projections,” Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, 2007.
[30]  MetEireann, Exceptional Weather Events, 2010, http://www.met.ie/climate-ireland/weather-events/Winter2009-10.pdf.
[31]  S. K. Malham, E. Cotter, S. O'Keeffe et al., “Summer mortality of the Pacific oyster, Crassostrea gigas, in the Irish Sea: the influence of temperature and nutrients on health and survival,” Aquaculture, vol. 287, no. 1-2, pp. 128–138, 2009.
[32]  R. Porter, “Reproductive cycle of the soft-shell clam, Mya arenaria, at Skagit Bay, Washington,” Fishery Bulletin, vol. 72, no. 3, pp. 648–656, 1974.
[33]  D. J. Brousseau, “Analysis of growth rate in Mya arenaria using the Von Bertalanffy equation,” Marine Biology, vol. 51, no. 3, pp. 221–227, 1979.
[34]  D. Cowles, Mya (Arenomya) arenaria Linnaeus, 1758, 2007, http://www.wallawalla.edu.
[35]  A. N. Cohen, The Exotics Guide: Non-Native Marine Species of the North American Pacific Coast, Center for Research on Aquatic Bioinvasions, Richmond, Calif, USA; San Francisco Estuary Institute, Oakland, Calif, USA, 2011, http://www.exoticsguide.org/.
[36]  DFO, “Assessment of softshell clam stocks in Quebec's coastal waters in 2010,” DFO Canadian Science Advisory Secretariat Report 2011/022, DFO, 2011.
[37]  W. N. Shaw, “Seasonal gonadal changes in female soft-shell clams, Mya arenaria, in the Tred Avon River, Maryland,” Proceedings of the National Shellfisheries Association, vol. 53, pp. 121–132, 1962.
[38]  W. R. Coe and H. J. Turner Jr., “Development of the gonads and gametes in the soft shell clam (Mya arenaria),” Journal of Morphology, vol. 62, no. 1, pp. 91–111, 1938.
[39]  J. Stevenson, “Report of JR Stevenson upon observations and experiments on mollusks in Essex County during 1906,” Arkansas Game and Fish Commission, pp. 68–96, 1906.
[40]  D. L. Belding, The Soft-Shelled Clam Fishery of Massachusetts, Marine Fisheries Series, 1930.
[41]  G. Thorson, “Reproduction and larval development of Danish marine bottom invertebrates; with special reference to the planktonic larvae in the Sound (?resund),” Meddelelser fra Kommissionen for Danmarks Fiskeri- og Havunders?gelser. Serie Plankton, vol. 4, no. 1, pp. 1–523, 1946.
[42]  C. R. Newell and H. Hidu, “The effects of sediment type on growth rate and shell allometry in the soft shelled clam Mya arenaria L,” Journal of Experimental Marine Biology and Ecology, vol. 65, no. 3, pp. 285–295, 1982.
[43]  V. L. Loosanoff and H. C. Davis, “Spawning of oysters at low temperatures,” Science, vol. 111, no. 2889, pp. 521–522, 1950.
[44]  T. C. Nelson, “On the distribution of critical temperatures for spawning and for ciliary activity in bivalve molluscs,” Science, vol. 67, no. 1730, pp. 220–221, 1928.
[45]  J. K. Buttner and S. Weston, “Softshell clam culture: hatchery phase, broodstock cat through seed production,” NRAC Publication 202, 2010.
[46]  D. Crisp, “The effects of the severe winter of 1962-63 on marine life in Britain,” Journal of Animal Ecology, vol. 33, no. 1, pp. 165–210, 1964.
[47]  M. Strasser, M. Walensky, and K. Reise, “Juvenile-adult distribution of the bivalve Mya arenaria on intertidal flats in the Wadden Sea: why are there so few year classes?” Helgoland Marine Research, vol. 53, no. 1, pp. 45–55, 1999.
[48]  P. M. Earle and F. D. Crisley, “Isolation and characterization of Vibrio parahaemolyticus from Cape Cod soft shell clams (Mya arenaria),” Journal of Applied Microbiology, vol. 29, no. 5, pp. 635–640, 1975.
[49]  M. Gibbons and W. Blogoslawski, “Predators, pests, parasites, and diseases,” in Clam Mariculture in North America, pp. 167–200, Elsevier, Amsterdam, The Netherlands, 1989.
[50]  H. Hidu and C. Newell, “Culture and ecology of the soft-shelled clam, Mya arenaria,” in Clam Mariculture in North America, Elsevier, Amsterdam, The Netherlands, 1989.
[51]  D. F. Leavitt, J. McDowell Capuzzo, R. M. Smolowitz, D. L. Miosky, B. A. Lancaster, and C. L. Reinisch, “Hematopoietic neoplasia in Mya arenaria: prevalence and indices of physiological condition,” Marine Biology, vol. 105, no. 2, pp. 313–321, 1990.
[52]  S. M. McLaughlin and M. Faisal, “A comparison of diagnostic assays for detection of Perkinsus spp. in the softshell clam Mya arenaria,” Aquaculture, vol. 172, no. 1-2, pp. 197–204, 1999.
[53]  C. F. Dungan, R. M. Hamilton, K. L. Hudson, C. B. McCollough, and K. S. Reece, “Two epizootic diseases in Chesapeake Bay commercial clams, Mya arenaria and Tagelus plebeius,” Diseases of Aquatic Organisms, vol. 50, no. 1, pp. 67–78, 2002.
[54]  T. Renault and B. Novoa, “Viruses infecting bivalve molluscs,” Aquatic Living Resources, vol. 17, no. 4, pp. 397–409, 2004.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413