全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Geochemistry of the Neoarchaean Volcanic Rocks of the Kilimafedha Greenstone Belt, Northeastern Tanzania

DOI: 10.1155/2012/603971

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Neoarchaean volcanic rocks of the Kilimafedha greenstone belt consist of three petrological types that are closely associated in space and time: the predominant intermediate volcanic rocks with intermediate calc-alkaline to tholeiitic affinities, the volumetrically minor tholeiitic basalts, and rhyolites. The tholeiitic basalts are characterized by slightly depleted LREE to nearly flat REE patterns with no Eu anomalies but have negative anomalies of Nb. The intermediate volcanic rocks exhibit very coherent, fractionated REE patterns, slightly negative to absent Eu anomalies, depletion in Nb, Ta, and Ti in multielement spidergrams, and enrichment of HFSE relative to MORB. Compared to the other two suites, the rhyolites are characterized by low concentrations of TiO2 and overall low abundances of total REE, as well as large negative Ti, Sr, and Eu anomalies. The three suites have a εNd (2.7?Ga) values in the range of ?0.51 to +5.17. The geochemical features of the tholeiitic basalts are interpreted in terms of derivation from higher degrees of partial melting of a peridotite mantle wedge that has been variably metasomatized by aqueous fluids derived from dehydration of the subducting slab. The rocks showing intermediate affinities are interpreted to have been formed as differentiates of a primary magma formed later by lower degrees of partial melting of a garnet free mantle wedge that was strongly metasomatized by both fluid and melt derived from the subducting oceanic slab. The rhyolites are best interpreted as having been formed by shallow level fractional crystallization of the intermediate volcanic rocks involving plagioclase and Ti-rich phases like ilmenite and magnetite as well as REE-rich phases like apatite, zircon, monazite, and allanite. The close spatial association of the three petrological types in the Kilimafedha greenstone belt is interpreted as reflecting their formation in an evolving late Archaean island arc. 1. Introduction The Kilimafedha greenstone belt of northeast Tanzania is one of the six greenstone belts of the Tanzania Craton occurring in the northern part of the country in the area south and east of the Lake Victoria. Other greenstone belts include the Sukumaland, Shinyanga-Malita, Nzega, Musoma-Mara, and Iramba-Sekenke [1, Figure 1]. All of these greenstone belts are prospective for gold mineralization with several large-scale mines now in operation including the Bulyanhulu, Tulawaka, Geita, Buzwagi, North Mara, and Golden Pride (Figure 1). Because of their economic significance, the greenstone belts of the Tanzania Craton

References

[1]  G. Borg and R. M. Shackleton, “The Tanzania and NE Zaire cratons,” in Greenstone Belts, M. J. de Wit and L. D. Ashwal, Eds., pp. 608–619, Clarendon Press, Oxford, UK, 1997.
[2]  G. Borg, “The Geita gold deposit in NW Tanzania—geology, ore petrology, geochemistry and timing of events,” Geologisches Jahrbuch D, vol. 100, pp. 545–595, 1994.
[3]  E. Kazimoto, Study of integrated geochemical techniques in the exploration for gold in North Mara mines, Tanzania [M.S. thesis], University of Dar es Salaam, 2008.
[4]  G. Borg, “New aspects of the lithostratigraphy and evolution of the Siga Hills, an Archaean granite-greenstone terrain in NW Tanzania,” Zeitschrift fur Angewandte Geologie, vol. 38, no. 2, pp. 89–93, 1992.
[5]  S. Manya and M. A. H. Maboko, “Geochemistry of the Neoarchaean mafic volcanic rocks of the Geita area, NW Tanzania: implications for stratigraphical relationships in the Sukumaland greenstone belt,” Journal of African Earth Sciences, vol. 52, no. 4-5, pp. 152–160, 2008.
[6]  G. Borg and T. Krogh, “Isotopic age data of single zircons from the Archaean Sukumaland Greenstone Belt, Tanzania,” Journal of African Earth Sciences, vol. 29, no. 2, pp. 301–312, 1999.
[7]  S. Manya and M. A. H. Maboko, “Dating basaltic volcanism in the Neoarchaean Sukumaland Greenstone Belt of the Tanzania Craton using the Sm-Nd method: implications for the geological evolution of the Tanzania Craton,” Precambrian Research, vol. 121, no. 1-2, pp. 35–45, 2003.
[8]  S. Manya and M. A. H. Maboko, “Geochemistry and geochronology of Neoarchaean volcanic rocks of the Iramba-Sekenke greenstone belt, central Tanzania,” Precambrian Research, vol. 163, no. 3-4, pp. 265–278, 2008.
[9]  K. R. Wirth, J. D. Vervoot, and B. Weisberger, “Origin and evolution of the Kilimafedha greenstone belt, eastern Tanzania Craton: evidence from Pb isotopes,” Geological Society of America Abstracts with Programs, vol. 36, p. 244, 2004.
[10]  S. Manya, K. Kobayashi, M. A. H. Maboko, and E. Nakamura, “Ion microprobe zircon U-Pb dating of the late Archaean metavolcanics and associated granites of the Musoma-Mara Greenstone Belt, Northeast Tanzania: implications for the geological evolution of the Tanzania Craton,” Journal of African Earth Sciences, vol. 45, no. 3, pp. 355–366, 2006.
[11]  S. Manya, M. A. H. Maboko, and E. Nakamura, “The geochemistry of high-Mg andesite and associated adakitic rocks in the Musoma-Mara Greenstone Belt, northern Tanzania: possible evidence for Neoarchaean ridge subduction?” Precambrian Research, vol. 159, no. 3-4, pp. 241–259, 2007.
[12]  S. Manya, M. A. H. Maboko, and E. Nakamura, “Geochemistry and Nd-isotopic composition of potassic magmatism in the Neoarchaean Musoma-Mara Greenstone Belt, northern Tanzania,” Precambrian Research, vol. 159, no. 3-4, pp. 231–240, 2007.
[13]  P. Pinna, S. Muhongo, B. A. Mcharo et al., “Geology and Mineral Map of Tanzania. Scale: 1:2.000.000,” BRGM-UDSM-GST team, 2008.
[14]  M. Macfarlane, “Brief explanation of the geology of quarter degree sheet 25, East Mara,” Mineral Resource Division, Dodoma, Tanzania, 1965.
[15]  T. N. Clifford, “The structural framework of Africa,” in African Magmatism and Tectonics, Oliver and Boyd, T. N. Clifford and I. G. Gass, Eds., pp. 1–26, Edinburgh, UK, 1970.
[16]  I. M. Gray and A. S. Macdonald, “Brief explanation of the geology of quarter degree sheet 6 and 14, Seronera,” Mineral Resource Division, Dodoma, Tanzania, 1965.
[17]  C. Kasanzu, M. A. H. Maboko, and S. Manya, “Geochemistry of fine-grained clastic sedimentary rocks of the Neoproterozoic Ikorongo Group, NE Tanzania: implications for provenance and source rock weathering,” Precambrian Research, vol. 164, no. 3-4, pp. 201–213, 2008.
[18]  C. W. A. Messo, Geochemistry of Neoarchaean volcanic rocks of the Ikoma area in the Kilimafedha greenstone belt, Northwestern Tanzania [M.S. thesis], University of Dar es Salaam, 2004.
[19]  H. R. Rollinson, Using Geochemical Data: Evaluation, Presentation, Interpretation, Longman, Essex, UK, 1993.
[20]  K. P. Jochum and S. P. Verma, “Extreme enrichment of Sb, Tl and other trace elements in altered MORB,” Chemical Geology, vol. 130, no. 3-4, pp. 289–299, 1996.
[21]  R. W. Le Maitre, P. Bateman, A. Dudek et al., A Classification of Igneous Rocks and Glossary of Terms, Blackwell, Oxford, UK, 1989.
[22]  J. A. Winchester and P. A. Floyd, “Geochemical discrimination of different magma series and their differentiation products using immobile elements,” Chemical Geology, vol. 20, no. C, pp. 325–343, 1977.
[23]  S. S. Sun and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes,” Magmatism in the ocean basins, pp. 313–345, 1989.
[24]  D. J. DePaolo, “Neodymium isotopes in the Colorado Front Range and crust-mantle evolution in the Proterozoic,” Nature, vol. 291, no. 5812, pp. 193–196, 1981.
[25]  H. Martin, “Adakitic magmas: modern analogues of Archaean granitoids,” Lithos, vol. 46, no. 3, pp. 411–429, 1999.
[26]  J. A. Pearce and D. W. Peate, “Tectonic implications of the composition of volcanic arc magmas,” Annual Review of Earth & Planetary Sciences, vol. 23, pp. 251–285, 1995.
[27]  S. D. Spulber and M. J. Rutherford, “The origin of rhyolite and plagiogranite in oceanic crust: an experimental study.,” Journal of Petrology, vol. 24, no. 1, pp. 1–25, 1983.
[28]  D. A. Wood, “The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province,” Earth and Planetary Science Letters, vol. 50, no. 1, pp. 11–30, 1980.
[29]  R. L. Rudnick, “Making continental crust,” Nature, vol. 378, no. 6557, pp. 571–578, 1995.
[30]  K. C. Condie, “Mafic crustal xenoliths and the origin of the lower continental crust,” Lithos, vol. 46, no. 1, pp. 95–101, 1999.
[31]  M. Mtoro, M. A. H. Maboko, and S. Manya, “Geochemistry and geochronology of the bimodal volcanic rocks of the Suguti area in the southern part of the Musoma-Mara Greenstone Belt, Northern Tanzania,” Precambrian Research, vol. 174, no. 3-4, pp. 241–257, 2009.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413