全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Larval Diel Vertical Migration of the Marine Gastropod Kelletia kelletii (Forbes, 1850)

DOI: 10.1155/2012/386575

Full-Text   Cite this paper   Add to My Lib

Abstract:

Documenting larval behavior is critical for building an understanding of larval dispersal dynamics and resultant population connectivity. Nocturnal diel vertical migration (DVM), a daily migration towards the surface of the water column at night and downward during the day, can profoundly influence dispersal outcomes. Via laboratory experiments we investigated whether marine gastropod Kelletia kelletii larvae undergo nocturnal DVM and whether the behavior was influenced by the presence of light, ontogeny, and laboratory culturing column height. Larvae exhibited a daily migration pattern consistent with nocturnal diel vertical migration with lower average vertical positioning (ZCM) during day-time hours and higher vertical positioning at night-time hours. ZCM patterns varied throughout ontogeny; larvae became more demersal as they approached competency. There was no effect of column height on larval ZCM. DVM behavior persisted in the absence of light, indicating a possible endogenous rhythm. Findings from field plankton tows corroborated laboratory nocturnal DVM findings; significantly more K. kelletii were found in surface waters at midnight compared to at noon. Unraveling the timing of and the cues initiating DVM behavior in K. kelletii larvae can help build predictive models of dispersal outcomes for this emerging fishery species. 1. Introduction In open coast marine habitats, multiple factors influence larval dispersal destinations, including abiotic factors, such as current speed and direction, and biotic factors, such as timing of larval release and pelagic larval duration (PLD). Additionally, larvae of marine species living within estuaries, on coastal shelves, or near oceanic islands have been hypothesized to use vertical positioning behaviors that, when coupled with stratified countercurrents, promote retention or return to suitable settlement habitat [1–3]. Documenting this form of larval behavior is a critical component to building an understanding of larval dispersal dynamics [3–6]. Diel vertical migration (DVM) has been implicated in both modeling [7, 8] and empirical studies [9] as a positioning behavior that can affect dispersal outcomes. In nocturnal DVM, larvae migrate toward the surface of the water column at night, and then downward in the water column during the day. Reverse DVM shows the opposite pattern, but it is also thought to influence dispersal outcomes (e.g., [10]). These vertical migratory behaviors, or sensory capabilities that are consistent with vertical movement behaviors [11], have been observed in a wide variety of

References

[1]  S. G. Morgan and J. L. Fisher, “Larval behavior regulates nearshore retention and offshore migration in an upwelling shadow and along the open coast,” Marine Ecology Progress Series, vol. 404, pp. 109–126, 2010.
[2]  T. W. Cronin and R. B. Forward, “Tidal vertical migration: an endogenous rhythm in estuarine crab larvae,” Science, vol. 205, no. 4410, pp. 1020–1022, 1979.
[3]  C. B. Paris, L. M. Chérubin, and R. K. Cowen, “Surfing, spinning, or diving from reef to reef: effects on population connectivity,” Marine Ecology Progress Series, vol. 347, pp. 285–300, 2007.
[4]  A. M. Knights, T. P. Crowe, and G. Burnell, “Mechanisms of larval transport: vertical distribution of bivalve larvae varies with tidal conditions,” Marine Ecology Progress Series, vol. 326, pp. 167–174, 2006.
[5]  E. W. North, Z. Schlag, R. R. Hood et al., “Vertical swimming behavior influences the dispersal of simulated oyster larvae in a coupled particle-tracking and hydrodynamic model of Chesapeake Bay,” Marine Ecology Progress Series, vol. 359, pp. 99–115, 2008.
[6]  A. C. Hardy and E. R. Gunther, The Plankton of the South Georgia Whaling Grounds and Adjacent Waters, 1926-1927, Cambridge University Press, London, UK, 1935.
[7]  M. Marta-Almeida, J. Dubert, A. Peliz, and H. Queiroga, “Influence of vertical migration pattern on retention of crab larvae in a seasonal upwelling system,” Marine Ecology Progress Series, vol. 307, pp. 1–19, 2006.
[8]  C. M. Aiken, S. A. Navarrete, and J. L. Pelegrí, “Potential changes in larval dispersal and alongshore connectivity on the central Chilean coast due to an altered wind climate,” Journal of Geophysical Research, vol. 116, Article ID G04026, 2011.
[9]  M. M. Criales, J. A. Browder, C. N. K. Mooers, M. B. Robblee, H. Cardenas, and T. L. Jackson, “Cross-shelf transport of pink shrimp larvae: interactions of tidal currents, larval vertical migrations and internal tides,” Marine Ecology Progress Series, vol. 345, pp. 167–184, 2007.
[10]  E. Poulin, A. T. Palma, G. Leiva et al., “Avoiding offshore transport of competent larvae during upwelling events: the case of the gastropod Concholepas concholepas in Central Chile,” Limnology and Oceanography, vol. 47, no. 4, pp. 1248–1255, 2002.
[11]  M. J. Kingsford, J. M. Leis, A. Shanks, K. C. Lindeman, S. G. Morgan, and J. Pineda, “Sensory environments, larval abilities and local self-recruitment,” Bulletin of Marine Science, vol. 70, no. 1, pp. 309–340, 2002.
[12]  J. H. Cohen and R. B. Forward, “Diel vertical migration of the marine copepod Calanopia americana. I. Twilight DVM and its relationship to the diel light cycle,” Marine Biology, vol. 147, no. 2, pp. 387–398, 2005.
[13]  S. M. Gallager, J. L. Manuel, D. A. Manning, and R. O'Dor, “Ontogenetic changes in the vertical distribution of giant scallop larvae, Placopecten magellanicus, in 9-m deep mesocosms as a function of light, food, and temperature stratification,” Marine Biology, vol. 124, no. 4, pp. 679–692, 1996.
[14]  P. J. Barile, A. W. Stoner, and C. M. Young, “Phototaxis and vertical migration of the queen conch (Strombus gigas Linne) veliger larvae,” Journal of Experimental Marine Biology and Ecology, vol. 183, no. 2, pp. 147–162, 1994.
[15]  J. L. Manuel, S. M. Gallager, C. M. Pearce, D. A. Manning, and R. K. O'Dor, “Veligers from different populations of sea scallop Placopecten magellanicus have different vertical migration patterns,” Marine Ecology Progress Series, vol. 142, no. 1–3, pp. 147–163, 1996.
[16]  T. P. Hurst, D. W. Cooper, J. S. Scheingross, E. M. Seale, B. J. Laurel, and M. L. Spencer, “Effects of ontogeny, temperature, and light on vertical movements of larval pacific cod (Gadus macrocephalus),” Fisheries Oceanography, vol. 18, no. 5, pp. 301–311, 2009.
[17]  E. D. Garland, C. A. Zimmer, and S. J. Lentz, “Larval distributions in inner-shelf waters: the roles of wind-driven cross-shelf currents and diel vertical migrations,” Limnology and Oceanography, vol. 47, no. 3, pp. 803–817, 2002.
[18]  R. B. Forward, “Diel vertical migration: zooplankton photobiology and behavior,” Oceanography and Marine Biology, vol. 26, pp. 361–393, 1988.
[19]  J. H. Cohen and R. B. Forward, “Zooplankton diel vertical migration—a review of proximate control,” Oceanography and Marine Biology, vol. 47, pp. 77–110, 2009.
[20]  B. Diehn, M. Feinleib, W. Haupt, E. Hildebrand, F. Lenci, and W. Nultsch, “Terminology of behavioral responses of motile organisms,” Photochemistry and Photobiology, vol. 26, pp. 559–560, 1977.
[21]  J. A. Rudjakov, “The possible causes of diel vertical migrations of planktonic animals,” Marine Biology, vol. 6, no. 2, pp. 98–105, 1970.
[22]  J. T. Enright and W. M. Hamner, “Vertical diurnal migration and endogenous rhythmicity,” Science, vol. 157, no. 3791, pp. 937–941, 1967.
[23]  S. Lass and P. Spaak, “Chemically induced anti-predator defences in plankton: a review,” Hydrobiologia, vol. 491, pp. 221–239, 2003.
[24]  D. Rittschof and J. H. Cohen, “Crustacean peptide and peptide-like pheromones and kairomones,” Peptides, vol. 25, no. 9, pp. 1503–1516, 2004.
[25]  A. Pires and R. M. Woollacott, “A direct and active influence of gravity on the behavior of a marine invertebrate larva,” Science, vol. 220, no. 4598, pp. 731–733, 1983.
[26]  M. Huntley and E. R. Brooks, “Effects of age and food availability on diel vertical migration of Calanus pacificus,” Marine Biology, vol. 71, no. 1, pp. 23–31, 1982.
[27]  W. E. Neill, “Population variation in the ontogeny of predator-induced vertical migration of copepods,” Nature, vol. 356, no. 6364, pp. 54–57, 1992.
[28]  M. Carriker, “Ecological observations on the distribution of oyster larvae in New Jersey estuaries,” Ecological Monographs, vol. 21, pp. 19–38, 1951.
[29]  R. A. Tankersley, J. M. Welch, and R. B. Forward, “Settlement times of blue crab (Callinectes sapidus) megalopae during flood-tide transport,” Marine Biology, vol. 141, no. 5, pp. 863–875, 2002.
[30]  K. Barsky, D. Haas, M. Heisdorf et al., “Review of selected California fisheries for 2008: coastal pelagic finfish, market squid, ocean salmon, groundfish, California spiny lobster, spot prawn, white seabass, kelp bass, thresher shark, skates and rays, Kellet's whelk, and sea cucumber,” CalCOFI Reports, vol. 50, pp. 14–42.
[31]  S. E. Swearer, J. S. Shima, M. E. Hellberg et al., “Evidence of self-recruitment in demersal marine populations,” Bulletin of Marine Science, vol. 70, supplement, no. 1, pp. 251–271, 2002.
[32]  C. White, K. A. Selkoe, J. Watson, D. A. Siegel, D. C. Zacherl, and R. J. Toonen, “Ocean currents help explain population genetic structure,” Proceedings of the Royal Society B, vol. 277, no. 1688, pp. 1685–1694, 2010.
[33]  S. R. Palumbi, “Population genetics, demographic connectivity, and the design of marine reserves,” Ecological Applications, vol. 13, no. 1, pp. S146–S158, 2003.
[34]  R. J. Rosenthal, “Observations on the reproductive biology of the Kellet's whelk, Kelletia kelletii (gastropoda: Neptuneidae),” The Veliger, vol. 12, no. 3, pp. 319–324, 1970.
[35]  J. H. McLean, Marine Shells of Southern California, vol. 24 of Science Series, Natural History Museum of Los Angeles County, Los Angeles, Calif, USA, 1978.
[36]  T. J. Herrlinger, “Range extension of Kelletia kelletii,” The Veliger, vol. 24, no. 1, p. 78, 1981.
[37]  J. H. Cohen and R. B. Forward, “Spectral sensitivity of vertically migrating marine copepods,” Biological Bulletin, vol. 203, no. 3, pp. 307–314, 2002.
[38]  M. J. Tremblay and M. Sinclair, “Diel vertical migration of sea scallop larvae Placopecten magellanicus in a shallow embayment,” Marine Ecology Progress Series, vol. 67, no. 1, pp. 19–25, 1990.
[39]  J. Ringelberg and E. Van Gool, “On the combined analysis of proximate and ultimate aspects in diel vertical migration (DVM) research,” Hydrobiologia, vol. 491, pp. 85–90, 2003.
[40]  G. Thorson, “Light as an ecological factor in the dispersal and settlement of larvae of marine bottom invertebrates,” Ophelia, vol. 1, no. 1, pp. 167–208, 1964.
[41]  D. A. McCarthy, R. B. Forward, and C. M. Young, “Ontogeny of phototaxis and geotaxis during larval development of the sabellariid polychaete Phragmatopoma lapidosa,” Marine Ecology Progress Series, vol. 241, pp. 215–220, 2002.
[42]  B. L. Bayne, “The responses of the larvae of Mytilus edulis L. to light and to gravity,” OIKOS, vol. 15, no. 1, pp. 162–174, 1964.
[43]  J. H. Cohen and R. B. Forward, “Diel vertical migration of the marine copepod Calanopia americana . II. Proximate role of exogenous light cues and endogenous rhythms,” Marine Biology, vol. 147, no. 2, pp. 399–410, 2005.
[44]  D. E. Stearns, “Copepod grazing behavior in simulated natural light and its relation to nocturnal feeding,” Marine Ecology Progress Series, vol. 30, pp. 65–76, 1986.
[45]  M. Pagano, R. Gaudy, D. Thibault, and F. Lochet, “Vertical migrations and feeding rhythms of mesozooplanktonic organisms in the Rh?ne River plume area (north-west Mediterranean Sea),” Estuarine, Coastal and Shelf Science, vol. 37, no. 3, pp. 251–269, 1993.
[46]  G. C. Harding, W. P. Vass, B. T. Hargrave, and S. Pearre Jr., “Diel vertical movements and feeding activity of zooplankton in St Georges Bay, NS, using net tows and a newly developed passive trap,” Canadian Journal of Fisheries and Aquatic Sciences, vol. 43, no. 5, pp. 952–967, 1986.
[47]  S. Pearre Jr., “Eat and run? The hunger/satiation hypothesis in vertical migration: history, evidence and consequences,” Biological Reviews of the Cambridge Philosophical Society, vol. 78, no. 1, pp. 1–79, 2003.
[48]  J. R. Pawlik, C. A. Butman, and V. R. Starczak, “Hydrodynamic facilitation of gregarious settlement of a reef-building tube worm,” Science, vol. 251, no. 4992, pp. 421–424, 1991.
[49]  C. M. Young, “Behavior and locomotion during the dispersal phase of larval life,” in Ecology of Marine Invertebrate Larvae, L. McEdward, Ed., CRC Press, Boca Raton, Fla, USA, 1995.
[50]  R. R. Strathmann, T. P. Hughes, A. M. Kuris et al., “Evolution of local recruitment and its consequences for marine populations,” Bulletin of Marine Science, vol. 70, no. 1, pp. 377–396, 2002.
[51]  J. R. Watson, D. A. Siegel, B. E. Kendall, S. Mitarai, A. Rassweiller, and S. D. Gaines, “Identifying critical regions in small-world marine metapopulations,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 43, pp. E907–E913, 2011.
[52]  R. K. Cowen, C. B. Paris, and A. Srinivasan, “Scaling of connectivity in marine populations,” Science, vol. 311, no. 5760, pp. 522–527, 2006.
[53]  C. DiBacco, D. Sutton, and L. McConnico, “Vertical migration behavior and horizontal distribution of brachyuran larvae in a low-inflow estuary: implications for bay-ocean exchange,” Marine Ecology Progress Series, vol. 217, pp. 191–206, 2001.
[54]  R. K. Cowen and S. Sponaugle, “Larval dispersal and marine population connectivity,” Annual Review of Marine Science, vol. 1, pp. 443–466, 2009.
[55]  J. M. Leis, “Behaviour as input for modelling dispersal of fish larvae: behaviour, biogeography, hydrodynamics, ontogeny, physiology and phylogeny meet hydrography,” Marine Ecology Progress Series, vol. 347, pp. 185–193, 2007.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413