全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Protectors or Traitors: The Roles of PON2 and PON3 in Atherosclerosis and Cancer

DOI: 10.1155/2012/342806

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cancer and atherosclerosis are major causes of death in western societies. Deregulated cell death is common to both diseases, with significant contribution of inflammatory processes and oxidative stress. These two form a vicious cycle and regulate cell death pathways in either direction. This raises interest in antioxidative systems. The human enzymes paraoxonase-2 (PON2) and PON3 are intracellular enzymes with established antioxidative effects and protective functions against atherosclerosis. Underlying molecular mechanisms, however, remained elusive until recently. Novel findings revealed that both enzymes locate to mitochondrial membranes where they interact with coenzyme Q10 and diminish oxidative stress. As a result, ROS-triggered mitochondrial apoptosis and cell death are reduced. From a cardiovascular standpoint, this is beneficial given that enhanced loss of vascular cells and macrophage death forms the basis for atherosclerotic plaque development. However, the same function has now been shown to raise chemotherapeutic resistance in several cancer cells. Intriguingly, PON2 as well as PON3 are frequently found upregulated in tumor samples. Here we review studies reporting PON2/PON3 deregulations in cancer, summarize most recent findings on their anti-oxidative and antiapoptotic mechanisms, and discuss how this could be used in putative future therapies to target atherosclerosis and cancer. 1. Introduction Most studies in the field of paraoxonases (PONs) deal with cardiovascular diseases, such as atherosclerosis and diabetes, where PONs exert protective functions in cell culture as well as animal studies. It has been anticipated that the known antioxidative functions of PONs, including PON2 and PON3, were central to their effects although underlying molecular mechanisms remained obscure. However, recent findings caused a significant progress in this field because molecular pathways of PON2 and PON3 functions have been largely revealed. Moreover, the result of the cell-protective function were shown to play a vital role in survival and stress resistance of cancer cells, along with the finding that numerous tumors overexpressed these enzymes. There, PON2 and PON3 appear to increase chemotherapeutic resistance and favor cell survival. In this review, we summarize the most recent findings and discuss the role of PON2/PON3 in atherosclerosis and cancer. A future perspective gives an outlook on how PONs may be targets of novel therapeutic approaches. 2. Altered Expression Levels of Paraoxonase Enzymes in Cancer It is established that oxidative stress

References

[1]  C. J. Ng, D. M. Shih, S. Y. Hama, N. Villa, M. Navab, and S. T. Reddy, “The paraoxonase gene family and atherosclerosis,” Free Radical Biology and Medicine, vol. 38, no. 2, pp. 153–163, 2005.
[2]  H. Camuzcuoglu, D. T. Arioz, H. Toy, S. Kurt, H. Celik, and O. Erel, “Serum paraoxonase and arylesterase activities in patients with epithelial ovarian cancer,” Gynecologic Oncology, vol. 112, no. 3, pp. 481–485, 2009.
[3]  E. T. Elkiran, N. Mar, B. Aygen, F. Gursu, A. Karaoglu, and S. Koca, “Serum paraoxonase and arylesterase activities in patients with lung cancer in a Turkish population,” BMC Cancer, vol. 7, article 48, 2007.
[4]  O. A. Uyar, M. Kara, D. Erol, A. Ardicoglu, and H. Yuce, “Investigating paraoxonase-1 gene Q192R and L55M polymorphism in patients with renal cell cancer,” Genetics and Molecular Research, vol. 10, no. 1, pp. 133–139, 2011.
[5]  C. Antognelli, L. Mearini, V. N. Talesa, A. Giannantoni, and E. Mearini, “Association of CYP17, GSTP1, and PON1 polymorphisms with the risk of prostate cancer,” Prostate, vol. 63, no. 3, pp. 240–251, 2005.
[6]  V. L. Stevens, C. Rodriguez, J. T. Talbot, A. L. Pavluck, M. J. Thun, and E. E. Calle, “Paraoxonase I (PONI) polymorphisms and prostate cancer in the CPS-II nutrition cohort,” Prostate, vol. 68, no. 12, pp. 1336–1340, 2008.
[7]  R. A. Hegele, “Paraoxonase genes and disease,” Annals of Medicine, vol. 31, no. 3, pp. 217–224, 1999.
[8]  R. A. Hegele, P. W. Connelly, S. W. Scherer et al., “Paraoxonase-2 gene (PON2) G148 variant associated with elevated fasting plasma glucose in noninsulin-dependent diabetes mellitus,” The Journal of Clinical Endocrinology and Metabolism, vol. 82, no. 10, pp. 3373–3377, 1997.
[9]  A. P. Boright, P. W. Connelly, J. H. Brunt, S. W. Scherer, L. C. Tsui, and R. A. Hegele, “Genetic variation in paraoxonase-1 and paraoxonase-2 is associated with variation in plasma lipoproteins in Alberta Hutterites,” Atherosclerosis, vol. 139, no. 1, pp. 131–136, 1998.
[10]  R. A. Hegele, S. B. Harris, P. W. Connelly et al., “Genetic variation in paraoxonase-2 is associated with variation in plasma lipoproteins in Canadian Oji-Cree,” Clinical Genetics, vol. 54, no. 5, pp. 394–399, 1998.
[11]  D. A. Stoltz, E. A. Ozer, T. J. Recker et al., “A common mutation in paraoxonase-2 results in impaired lactonase activity,” The Journal of Biological Chemistry, vol. 284, no. 51, pp. 35564–35571, 2009.
[12]  S. Altenh?fer, I. Witte, J. F. Teiber et al., “One enzyme, two functions: PON2 prevents mitochondrial superoxide formation and apoptosis independent from its lactonase activity,” The Journal of Biological Chemistry, vol. 285, no. 32, pp. 24398–24403, 2010.
[13]  D. K. Sanghera, C. E. Aston, N. Saha, and M. I. Kamboh, “DNA polymorphisms in two paraoxonase genes (PON1 and PON2) are associated with the risk of coronary heart disease,” American Journal of Human Genetics, vol. 62, no. 1, pp. 36–44, 1998.
[14]  J. G. Wheeler, B. D. Keavney, H. Watkins, R. Collins, and J. Danesh, “Four paraoxonase gene polymorphisms in 11 212 cases of coronary heart disease and 12 786 controls: meta-analysis of 43 studies,” The Lancet, vol. 363, no. 9410, pp. 689–695, 2004.
[15]  Y. Li, Y. Li, R. Tang et al., “Discovery and analysis of hepatocellular carcinoma genes using cDNA microarrays,” Journal of Cancer Research and Clinical Oncology, vol. 128, no. 7, pp. 369–379, 2002.
[16]  T. Ribarska, M. Ingenwerth, W. Goering, R. Engers, and W. A. Schulz, “Epigenetic inactivation of the placentally imprinted tumor suppressor gene TFPI2 in prostate carcinoma,” Cancer Genomics and Proteomics, vol. 7, no. 2, pp. 51–60, 2010.
[17]  M. E. Ross, X. Zhou, G. Song et al., “Classification of pediatric acute lymphoblastic leukemia by gene expression profiling,” Blood, vol. 102, no. 8, pp. 2951–2959, 2003.
[18]  H. Kang, I. M. Chen, C. S. Wilson et al., “Gene expression classifiers for relapse-free survival and minimal residual disease improve risk classification and outcome prediction in pediatric B-precursor acute lymphoblastic leukemia,” Blood, vol. 115, no. 7, pp. 1394–1405, 2010.
[19]  O. Frank, B. Brors, A. Fabarius, et al., “Gene expression signature of primary imatinib-resistant chronic myeloid leukemia patients,” Leukemia, vol. 20, no. 8, pp. 1400–1407, 2006.
[20]  C. A. Pise-Masison, M. Radonovich, R. Mahieux et al., “Transcription profile of cells infected with human T-cell leukemia virus type I compared with activated lymphocytes,” Cancer Research, vol. 62, no. 12, pp. 3562–3571, 2002.
[21]  J. K. Choi, J. Y. Choi, D. G. Kim et al., “Integrative analysis of multiple gene expression profiles applied to liver cancer study,” FEBS Letters, vol. 565, no. 1–3, pp. 93–100, 2004.
[22]  A. D. Santin, F. Zhan, S. Bellone, et al., “Gene expression profiles in primary ovarian serous papillary tumors and normal ovarian epithelium: identification of candidate molecular markers for ovarian cancer diagnosis and therapy,” International Journal of Cancer, vol. 112, no. 1, pp. 14–25, 2004.
[23]  I. Witte, S. Altenh?fer, P. Wilgenbus et al., “Beyond reduction of atherosclerosis: PON2 provides apoptosis resistance and stabilizes tumor cells,” Cell Death and Disease, vol. 2, no. 1, Article ID e112, 2011.
[24]  E. M. Schweikert, A. Devarajan, I. Witte, et al., “PON3 is upregulated in cancer tissues and protects against mitochondrial superoxide-mediated cell death,” Cell Death Differentiation. In press.
[25]  C. J. Ng, N. Bourquard, V. Grijalva et al., “Paraoxonase-2 deficiency aggravates atherosclerosis in mice despite lower apolipoprotein-B-containing lipoproteins: anti-atherogenic role for paraoxonase-2,” The Journal of Biological Chemistry, vol. 281, no. 40, pp. 29491–29500, 2006.
[26]  S. Reuter, S. C. Gupta, M. M. Chaturvedi, and B. B. Aggarwal, “Oxidative stress, inflammation, and cancer: how are they linked?” Free Radical Biology and Medicine, vol. 49, no. 11, pp. 1603–1616, 2010.
[27]  M. Rosenblat, D. Draganov, C. E. Watson, C. L. Bisgaier, B. N. La Du, and M. Aviram, “Mouse macrophage paraoxonase 2 activity is increased whereas cellular paraoxonase 3 activity is decreased under oxidative stress,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 3, pp. 468–474, 2003.
[28]  M. Shiner, B. Fuhrman, and M. Aviram, “Paraoxonase 2 (PON2) expression is upregulated via a reduced-nicotinamide- adenine-dinucleotide-phosphate (NADPH)-oxidase-dependent mechanism during monocytes differentiation into macrophages,” Free Radical Biology and Medicine, vol. 37, no. 12, pp. 2052–2063, 2004.
[29]  B. Fuhrman, A. Gantman, J. Khateeb et al., “Urokinase activates macrophage PON2 gene transcription via the PI3K/ROS/MEK/SREBP-2 signalling cascade mediated by the PDGFR-β,” Cardiovascular Research, vol. 84, no. 1, pp. 145–154, 2009.
[30]  D. Hanahan and R. A. Weinberg, “The hallmarks of cancer,” Cell, vol. 100, no. 1, pp. 57–70, 2000.
[31]  F. Azizi, M. Rahmani, F. Raiszadeh, M. Solati, and M. Navab, “Association of lipids, lipoproteins, apolipoproteins and paraoxonase enzyme activity with premature coronary artery disease,” Coronary Artery Disease, vol. 13, no. 1, pp. 9–16, 2002.
[32]  C. J. Ng, D. J. Wadleigh, A. Gangopadhyay et al., “Paraoxonase-2 is a ubiquitously expressed protein with antioxidant properties and is capable of preventing cell-mediated oxidative modification of low density lipoprotein,” The Journal of Biological Chemistry, vol. 276, no. 48, pp. 44444–44449, 2001.
[33]  C. J. Ng, N. Bourquard, S. Y. Hama et al., “Adenovirus-mediated expression of human paraoxonase 3 protects against the progression of atherosclerosis in apolipoprotein E-deficient mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 6, pp. 1368–1374, 2007.
[34]  S. T. Reddy, A. Devarajan, N. Bourquard, D. Shih, and A. M. Fogelman, “Is it just paraoxonase 1 or are other members of the paraoxonase gene family implicated in atherosclerosis?” Current Opinion in Lipidology, vol. 19, no. 4, pp. 405–408, 2008.
[35]  D. M. Shih, Y. R. Xia, X. P. Wang et al., “Decreased obesity and atherosclerosis in human paraoxonase 3 transgenic mice,” Circulation Research, vol. 100, no. 8, pp. 1200–1207, 2007.
[36]  C. J. Ng, S. Y. Hama, N. Bourquard, M. Navab, and S. T. Reddy, “Adenovirus mediated expression of human paraoxonase 2 protects against the development of atherosclerosis in apolipoprotein E-deficient mice,” Molecular Genetics and Metabolism, vol. 89, no. 4, pp. 368–373, 2006.
[37]  S. T. Reddy, D. J. Wadleigh, V. Grijalva et al., “Human paraoxonase-3 is an HDL-associated enzyme with biological activity similar to paraoxonase-1 protein but is not regulated by oxidized lipids,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 21, no. 4, pp. 542–547, 2001.
[38]  A. Devarajan, N. Bourquard, S. Hama et al., “Paraoxonase 2 deficiency alters mitochondrial function and exacerbates the development of atherosclerosis,” Antioxidants and Redox Signaling, vol. 14, no. 3, pp. 341–351, 2011.
[39]  N. Bourquard, C. J. Ng, and S. T. Reddy, “Impaired hepatic insulin signalling in P0N2-deficient mice: a novel role for the P0N2/apoE axis on the macrophage inflammatory response,” Biochemical Journal, vol. 436, no. 1, pp. 91–100, 2011.
[40]  S. Horke, I. Witte, P. Wilgenbus, M. Krüger, D. Strand, and U. F?rstermann, “Paraoxonase-2 reduces oxidative stress in vascular cells and decreases endoplasmic reticulum stress-induced caspase activation,” Circulation, vol. 115, no. 15, pp. 2055–2064, 2007.
[41]  T. Ohnishi and B. L. Trumpower, “Differential effects of antimycin on ubisemiquinone bound in different environments in isolated succinate·cytochrome c reductase complex,” The Journal of Biological Chemistry, vol. 255, no. 8, pp. 3278–3284, 1980.
[42]  A. W. Linnane and H. Eastwood, “Cellular redox regulation and prooxidant signaling systems: a new perspective on the free radical theory of aging,” Annals of the New York Academy of Sciences, vol. 1067, no. 1, pp. 47–55, 2006.
[43]  J. F. Turrens, A. Alexandre, and A. L. Lehninger, “Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria,” Archives of Biochemistry and Biophysics, vol. 237, no. 2, pp. 408–414, 1985.
[44]  A. Lass and R. S. Sohal, “Comparisons of coenzyme Q bound to mitochondrial membrane proteins among different mammalian species,” Free Radical Biology and Medicine, vol. 27, no. 1-2, pp. 220–226, 1999.
[45]  P. J. Klover, T. A. Zimmers, L. G. Koniaris, and R. A. Mooney, “Chronic exposure to interleukin-6 causes hepatic insulin resistance in mice,” Diabetes, vol. 52, no. 11, pp. 2784–2789, 2003.
[46]  S. E. Shoelson, J. Lee, and A. B. Goldfine, “Inflammation and insulin resistance,” The Journal of Clinical Investigation, vol. 116, no. 7, pp. 1793–1801, 2006.
[47]  D. Cai, M. Yuan, D. F. Frantz et al., “Local and systemic insulin resistance resulting from hepatic activation of IKK-β and NF-κB,” Nature Medicine, vol. 11, no. 2, pp. 183–190, 2005.
[48]  R. Visconti and D. Grieco, “New insights on oxidative stress in cancer,” Current Opinion in Drug Discovery and Development, vol. 12, no. 2, pp. 240–245, 2009.
[49]  J. M. Adams and S. Cory, “The Bcl-2 apoptotic switch in cancer development and therapy,” Oncogene, vol. 26, no. 9, pp. 1324–1337, 2007.
[50]  V. E. Kagan, H. A. Bayir, N. A. Belikova et al., “Cytochrome c/cardiolipin relations in mitochondria: a kiss of death,” Free Radical Biology and Medicine, vol. 46, no. 11, pp. 1439–1453, 2009.
[51]  M. Ott, J. D. Robertson, V. Gogvadze, B. Zhivotovsky, and S. Orrenius, “Cytochrome c release from mitochondria proceeds by a two-step process,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 3, pp. 1259–1263, 2002.
[52]  M. Boyce and J. Yuan, “Cellular response to endoplasmic reticulum stress: a matter of life or death,” Cell Death and Differentiation, vol. 13, no. 3, pp. 363–373, 2006.
[53]  S. Horke, I. Witte, P. Wilgenbus et al., “Protective effect of paraoxonase-2 against endoplasmic reticulum stress-induced apoptosis is lost upon disturbance of calcium homoeostasis,” Biochemical Journal, vol. 416, no. 3, pp. 395–405, 2008.
[54]  E. M. Schweikert, J. Amort, P. Wilgenbus, U. Foerstermann, J. Teiber, and S. Horke, “Paraoxonases-2 and 3 are important defense enzymes against Pseudomonas aeruginosa virulence factors due to their anti-oxidative and anti-inflammatory properties,” Journal of Lipids, vol. 2012, Article ID 352857, 9 pages, 2012.
[55]  E. White and R. S. DiPaola, “The double-edged sword of autophagy modulation in cancer,” Clinical Cancer Research, vol. 15, no. 17, pp. 5308–5316, 2009.
[56]  M. Djavaheri-Mergny, M. Amelotti, J. Mathieu et al., “NF-κB activation represses tumor necrosis factor-α-induced autophagy,” The Journal of Biological Chemistry, vol. 281, no. 41, pp. 30373–30382, 2006.
[57]  R. Scherz-Shouval, E. Shvets, E. Fass, H. Shorer, L. Gil, and Z. Elazar, “Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4,” The EMBO Journal, vol. 26, no. 7, pp. 1749–1760, 2007.
[58]  M. Dewaele, H. Maes, and P. Agostinis, “ROS-mediated mechanisms of autophagy stimulation and their relevance in cancer therapy,” Autophagy, vol. 6, no. 7, pp. 838–854, 2010.
[59]  P. Vandenabeele, W. Declercq, F. Van Herreweghe, and T. V. Berghe, “The role of the kinases RIP1 and RIP3 in TNF-induced necrosis,” Science Signaling, vol. 3, no. 115, article re4, 2010.
[60]  A. Sica, P. Allavena, and A. Mantovani, “Cancer related inflammation: the macrophage connection,” Cancer Letters, vol. 267, no. 2, pp. 204–215, 2008.
[61]  J. B. Kim, Y.-R. Xia, C. E. Romanoski et al., “Paraoxonase-2 modulates stress response of endothelial cells to oxidized phospholipids and a bacterial quorum-sensing molecule,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, no. 11, pp. 2624–2633, 2011.
[62]  G. Fortunato, M. D. Di Taranto, U. M. Bracale et al., “Decreased paraoxonase-2 expression in human carotids during the progression of atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 3, pp. 594–600, 2008.
[63]  G. Giordano, T. B. Cole, C. E. Furlong, and L. G. Costa, “Paraoxonase 2 (PON2) in the mouse central nervous system: a neuroprotective role?” Toxicology and Applied Pharmacology, vol. 256, no. 3, pp. 369–378, 2011.
[64]  N. Ticozzi, A. L. LeClerc, P. J. Keagle et al., “Paraoxonase gene mutations in amyotrophic lateral sclerosis,” Annals of Neurology, vol. 68, no. 1, pp. 102–107, 2010.
[65]  P. M. Erlich, K. L. Lunetta, L. A. Cupples et al., “Polymorphisms in the PON gene cluster are associated with Alzheimer disease,” Human Molecular Genetics, vol. 15, no. 1, pp. 77–85, 2006.
[66]  B. Mackness, P. Mcelduff, and M. I. Mackness, “The paraoxonase-2-310 polymorphism is associated with the presence of microvascular complications in diabetes mellitus,” Journal of Internal Medicine, vol. 258, no. 4, pp. 363–368, 2005.
[67]  H. L. Li, D. P. Liu, and C. C. Liang, “Paraoxonase gene polymorphisms, oxidative stress, and diseases,” Journal of Molecular Medicine, vol. 81, no. 12, pp. 766–779, 2003.
[68]  J. I. Joo, T. S. Oh, D. H. Kim et al., “Differential expression of adipose tissue proteins between obesity-susceptible and -resistant rats fed a high-fat diet,” Proteomics, vol. 11, no. 8, pp. 1429–1448, 2011.
[69]  S. Horke, I. Witte, S. Altenh?fer et al., “Paraoxonase 2 is down-regulated by the Pseudomonas aeruginosa quorum-sensing signal N-(3-oxododecanoyl)-L-homoserine lactone and attenuates oxidative stress induced by pyocyanin,” Biochemical Journal, vol. 426, no. 1, pp. 73–83, 2010.
[70]  J. F. Teiber, S. Horke, D. C. Haines et al., “Dominant role of paraoxonases in inactivation of the Pseudomonas aeruginosa quorum-sensing signal N-(3-oxododecanoyl)-L-homoserine lactone,” Infection and Immunity, vol. 76, no. 6, pp. 2512–2519, 2008.
[71]  D. A. Stoltz, E. A. Ozer, C. J. Ng et al., “Paraoxonase-2 deficiency enhances Pseudomonas aeruginosa quorum sensing in murine tracheal epithelia,” American Journal of Physiology, vol. 292, no. 4, pp. L852–L860, 2007.
[72]  J. Marsillach, J. Camps, R. Beltran-Debón et al., “Immunohistochemical analysis of paraoxonases-1 and 3 in human atheromatous plaques,” European Journal of Clinical Investigation, vol. 41, no. 3, pp. 308–314, 2011.
[73]  D. I. Draganov, “Human PON3, effects beyond the HDL: clues from human PON3 transgenic mice,” Circulation Research, vol. 100, no. 8, pp. 1104–1105, 2007.
[74]  Z. G. She, W. Zheng, Y. S. Wei et al., “Human paraoxonase gene cluster transgenic overexpression represses atherogenesis and promotes atherosclerotic plaque stability in ApoE-Null Mice,” Circulation Research, vol. 104, no. 10, pp. 1160–1168, 2009.
[75]  V. L. Roger, A. S. Go, D. M. Lloyd-Jones et al., “Heart disease and stroke statistics-2011 update: a report from the American Heart Association,” Circulation, vol. 123, pp. e18–e209, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413