Paraoxonases-2 and -3 Are Important Defense Enzymes against Pseudomonas aeruginosa Virulence Factors due to Their Anti-Oxidative and Anti-Inflammatory Properties
The pathogen Pseudomonas aeruginosa causes serious damage in immunocompromised patients by secretion of various virulence factors, among them the quorum sensing N-(3-oxododecanoyl)-L-homoserine lactone (3OC12) and the redox-active pyocyanin (PCN). Paraoxonase-2 (PON2) may protect against P. aeruginosa infections, as it efficiently inactivates 3OC12 and diminishes PCN-induced oxidative stress. This defense could be circumvented because 3OC12 mediates intracellular Ca2+-rise in host cells, which causes rapid inactivation and degradation of PON2. Importantly, we recently found that the PON2 paralogue PON3 prevents mitochondrial radical formation. Here we investigated its role as additional potential defense mechanism against P. aeruginosa infections. Our studies demonstrate that PON3 diminished PCN-induced oxidative stress. Moreover, it showed clear anti-inflammatory potential by protecting against NF-κB activation and IL-8 release. The latter similarly applied to PON2. Furthermore, we observed a Ca2+-mediated inactivation and degradation of PON3, again in accordance with previous findings for PON2. Our results suggest that the anti-oxidative and anti-inflammatory functions of PON2 and PON3 are an important part of our innate defense system against P. aeruginosa infections. Furthermore, we conclude that P. aeruginosa circumvents PON3 protection by the same pathway as for PON2. This may help identifying underlying mechanisms in order to sustain the protection afforded by these enzymes. 1. Introduction The bacterium Pseudomonas aeruginosa is an opportunistic nosocomial pathogen, which infects the pulmonary tract of, for example, immunocompromised patients or those suffering from cystic fibrosis, pneumonia, burn wounds, HIV, or cancer chemotherapy [1]. The infection causes serious damage in the host, complicated by an often hindered antibiotic treatment due to multiresistances and biofilm formation that provides physical protection. Furthermore, P. aeruginosa secrets a variety of virulence factors to regulate bacterial communication and weaken the defense mechanisms of the infected host. Two important factors are the quorum sensing signal N-(3-oxododecanoyl)-L-homoserine lactone (3OC12) and the redox-active pyocyanin (PCN). 3OC12 is a mediator of the cell-density-dependent signaling system known as quorum sensing, by which the bacteria coordinate their gene expression. If bacterial density and 3OC12 concentration exceed a certain threshold, the bacteria become virulent by expression of virulence factors (immunogenic exoenzymes and toxins) and by inducing
References
[1]
J. A. Driscoll, S. L. Brody, and M. H. Kollef, “The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections,” Drugs, vol. 67, no. 3, pp. 351–368, 2007.
[2]
P. Boontham, A. Robins, P. Chandran et al., “Significant immunomodulatory effects of Pseudomonas aeruginosa quorum-sensing signal molecules: possible link in human sepsis,” Clinical Science, vol. 115, no. 11, pp. 343–351, 2008.
[3]
R. S. Smith, E. R. Fedyk, T. A. Springer, N. Mukaida, B. H. Iglewski, and R. P. Phipps, “IL-8 production in human lung fibroblasts and epithelial cells activated by the Pseudomonas autoinducer N-3-oxododecanoyl homoserine lactone is transcriptionally regulated by NF-κB and activator protein-2,” Journal of Immunology, vol. 167, no. 1, pp. 366–374, 2001.
[4]
H. Li, L. Wang, L. Ye et al., “Influence of Pseudomonas aeruginosa quorum sensing signal molecule N-(3-oxododecanoyl) homoserine lactone on mast cells,” Medical Microbiology and Immunology, vol. 198, no. 2, pp. 113–121, 2009.
[5]
C. A. Jacobi, F. Schiffner, M. Henkel et al., “Effects of bacterial N-acyl homoserine lactones on human Jurkat T lymphocytes-OdDHL induces apoptosis via the mitochondrial pathway,” International Journal of Medical Microbiology, vol. 299, no. 7, pp. 509–519, 2009.
[6]
R. S. Smith, S. G. Harris, R. Phipps, and B. Iglewski, “The Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl)homoserine lactone contributes to virulence and induces inflammation in vivo,” Journal of Bacteriology, vol. 184, no. 4, pp. 1132–1139, 2002.
[7]
T. Bjarnsholt, M. van Gennip, T. H. Jakobsen, L. D. Christensen, P. ?. Jensen, and M. Givskov, “In vitro screens for quorum sensing inhibitors and in vivo confirmation of their effect,” Nature Protocols, vol. 5, no. 2, pp. 282–293, 2010.
[8]
M. Hentzer, H. Wu, J. B. Andersen et al., “Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors,” The EMBO Journal, vol. 22, no. 15, pp. 3803–3815, 2003.
[9]
G. W. Lau, D. J. Hassett, H. Ran, and F. Kong, “The role of pyocyanin in Pseudomonas aeruginosa infection,” Trends in Molecular Medicine, vol. 10, no. 12, pp. 599–606, 2004.
[10]
H. M. Hassan and I. Fridovich, “Mechanism of the antibiotic action of pyocyanine,” Journal of Bacteriology, vol. 141, no. 1, pp. 156–163, 1980.
[11]
K. J. Reszka, Y. O'Malley, M. L. McCormick, G. M. Denning, and B. E. Britigan, “Oxidation of pyocyanin, a cytotoxic product from Pseudomonas aeruginosa, by microperoxidase 11 and hydrogen peroxide,” Free Radical Biology and Medicine, vol. 36, no. 11, pp. 1448–1459, 2004.
[12]
B. Rada, K. Lekstrom, S. Damian, C. Dupuy, and T. L. Leto, “The Pseudomonas toxin pyocyanin inhibits the dual oxidase-based antimicrobial system as it imposes oxidative stress on airway epithelial cells,” Journal of Immunology, vol. 181, no. 7, pp. 4883–4893, 2008.
[13]
G. W. Lau, H. Ran, F. Kong, D. J. Hassett, and D. Mavrodi, “Pseudomonas aeruginosa pyocyanin is critical for lung infection in mice,” Infection and Immunity, vol. 72, no. 7, pp. 4275–4278, 2004.
[14]
S. L. Primo-Parmo, R. C. Sorenson, J. Teiber, and B. N. La Du, “The human serum paraoxonase/arylesterase gene (PON1) is one member of a multigene family,” Genomics, vol. 33, no. 3, pp. 498–507, 1996.
[15]
J. Marsillach, B. Mackness, M. Mackness et al., “Immunohistochemical analysis of paraoxonases-1, 2, and 3 expression in normal mouse tissues,” Free Radical Biology & Medicine, vol. 45, pp. 146–157, 2008.
[16]
E.-M. Schweikert, A. Devarajan, I. Witte et al., “PON3 is upregulated in cancer tissues and protects against mitochondrial superoxide-mediated cell death,” Cell Death & Differentiation. In press.
[17]
D. I. Draganov, J. F. Teiber, A. Speelman, Y. Osawa, R. Sunahara, and B. N. La Du, “Human paraoxonases (PON1, PON2, and PON3) are lactonases with overlapping and distinct substrate specificities,” Journal of Lipid Research, vol. 46, no. 6, pp. 1239–1247, 2005.
[18]
J. F. Teiber, S. S. Billecke, B. N. La Du, and D. I. Draganov, “Estrogen esters as substrates for human paraoxonases,” Archives of Biochemistry and Biophysics, vol. 461, no. 1, pp. 24–29, 2007.
[19]
D. I. Draganov, “Lactonases with oragnophosphatase activity: structural and evolutionary perspectives,” Chemico-Biological Interactions, vol. 187, no. 1–3, pp. 370–372, 2010.
[20]
D. A. Stoltz, E. A. Ozer, C. J. Ng et al., “Paraoxonase-2 deficiency enhances Pseudomonas aeruginosa quorum sensing in murine tracheal epithelia,” American Journal of Physiology, vol. 292, no. 4, pp. L852–L860, 2007.
[21]
I. Witte, S. Altenh?fer, P. Wilgenbus et al., “Beyond reduction of atherosclerosis: PON2 provides apoptosis resistance and stabilizes tumor cells,” Cell Death and Disease, vol. 2 , article e112, 2011.
[22]
S. Altenh?fer, I. Witte, J. F. Teiber et al., “One enzyme, two functions: PON2 prevents mitochondrial superoxide formation and apoptosis independent from its lactonase activity,” Journal of Biological Chemistry, vol. 285, no. 32, pp. 24398–24403, 2010.
[23]
A. Devarajan, N. Bourquard, S. Hama et al., “Paraoxonase 2 deficiency alters mitochondrial function and exacerbates the development of atherosclerosis,” Antioxidants and Redox Signaling, vol. 14, no. 3, pp. 341–351, 2011.
[24]
S. Horke, I. Witte, S. Altenh?fer et al., “Paraoxonase 2 is down-regulated by the Pseudomonas aeruginosa quorum-sensing signal N-(3-oxododecanoyl)-L-homoserine lactone and attenuates oxidative stress induced by pyocyanin,” Biochemical Journal, vol. 426, no. 1, pp. 73–83, 2010.
[25]
S. Horke, I. Witte, P. Wilgenbus et al., “Protective effect of paraoxonase-2 against endoplasmic reticulum stress-induced apoptosis is lost upon disturbance of calcium homoeostasis,” Biochemical Journal, vol. 416, no. 3, pp. 395–405, 2008.
[26]
S. Horke, I. Witte, P. Wilgenbus, M. Krüger, D. Strand, and U. F?rstermann, “Paraoxonase-2 reduces oxidative stress in vascular cells and decreases endoplasmic reticulum stress-induced caspase activation,” Circulation, vol. 115, no. 15, pp. 2055–2064, 2007.
[27]
J. F. Teiber, S. Horke, D. C. Haines et al., “Dominant role of paraoxonases in inactivation of the Pseudomonas aeruginosa quorum-sensing signal N-(3-oxododecanoyl)-L-homoserine lactone,” Infection and Immunity, vol. 76, no. 6, pp. 2512–2519, 2008.
[28]
G. M. Denning, L. A. Wollenwebber, M. A. Railsback, C. D. Cox, L. L. Stoll, and B. E. Britigan, “Pseudomonas pyocyanin increases interleukin-8 expression by human airway epithelial cells,” Infection and Immunity, vol. 66, no. 12, pp. 5777–5784, 1998.
[29]
I. Witte, U. Foerstermann, A. Devarajan, S. Reddy, and S. Horke, “Protectors and traitors—the roles of PON2 and PON3 in atherosclerosis and cancer,” Journal of Lipids. In press.
[30]
C. Kunsch and C. A. Rosen, “NF-κB subunit-specific regulation of the interleukin-8 promoter,” Molecular and Cellular Biology, vol. 13, no. 10, pp. 6137–6146, 1993.
[31]
H. B. Kang, Y. E. Kim, H. J. Kwon, D. E. Sok, and Y. Lee, “Enhancement of NF-κB expression and activity upon differentiation of human embryonic stem cell line SNUhES3,” Stem Cells and Development, vol. 16, no. 4, pp. 615–623, 2007.