全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Tracer Diffusion Mechanism in Amorphous Solids

DOI: 10.1155/2011/861373

Full-Text   Cite this paper   Add to My Lib

Abstract:

Tracer diffusion in amorphous solid is studied by mean of -bubble statistic. The -bubble is defined as a group of atoms around a spherical void and large bubble that represents a structural defect which could be eliminated under thermal annealing. It was found that amorphous alloys such as ( , 81.5 and 70) and suffer from a large number of vacancy bubbles which function like diffusion vehicle. The concentration of vacancy bubble weakly depends on temperature, but essentially on the relaxation degree of considered sample. The diffusion coefficient estimated for proposed mechanism via vacancy bubbles is in a reasonable agreement with experiment for actual amorphous alloys. The relaxation effect for tracer diffusion in amorphous alloys is interpreted by the elimination of vacancy bubbles under thermal annealing. 1. Introduction Metallic phases with amorphous structure are currently a subject of intensive studies not only due to their wide applications in practice, but also because of interest from a fundamental point of view [1–6]. Despite their technological importance, the local structure of amorphous alloys (AMAs) as well as the diffusion processes involved cannot be regarded as being fully understood. One of possible mechanisms proposed for diffusion in AMAs presents a scenario in which atoms hop into vacancy or quasivacancy determined as a microscopic void. In addition, as-quenched AMA suffers from large number of vacancies in supersaturation which quickly annihilates upon relaxation. Consequently, the diffusion constant decreases and reaches a final value until the relaxation is over, for example, the system is transposed into a well-relaxed state [7, 8]. As such, the vacancy diffusion model enables the interpretation the relaxation effect which is observed experimentally in certain AMAs [9–13]. However, the stableness of vacancy is questioned for this model. Unlike the case of crystal, the neighbor-atom cages around vacancy are not structurally identical before and after atom hops into the vacancy. The consequent relaxation after atom jump may lead to the vacancy disappearing and finally all vacancies disappear. The molecular dynamic (MD) simulation could be used to test this question. In accordance with [14, 15], a vacancy introduced by removing some atoms from MD model disappears after one or several jumps indicating impossibility of vacancy mechanism. A logical supposition is that an elementary diffusion act will be accompanied with a large atomic arrangement around the vacancy. It results in disappearing the present vacancy, but also sometimes

References

[1]  Y. Limoge, “Activation volume for diffusion in a metallic glass,” Acta Metallurgica Et Materialia, vol. 38, no. 9, pp. 1733–1742, 1990.
[2]  J. Horváth, J. Ott, K. Pfahler, and W. Ulfert, “Tracer diffusion in amorphous alloys,” Materials Science and Engineering, vol. 97, pp. 409–413, 1988.
[3]  J. Pavlovsky, W. Ulfert, and W. Frank, “Self-diffusion of Co in amorphous CoNbB during isothermal crystallization,” Materials Chemistry and Physics, vol. 36, no. 3-4, pp. 383–388, 1994.
[4]  W. Frank, J. Horváth, and H. Kronmüller, “Diffusion mechanisms in amorphous alloys,” Materials Science and Engineering, vol. 97, pp. 415–418, 1988.
[5]  Vo Van Hoang, “Computer simulation of the effects of B and P concentrations on microstructure in amorphous Fe-B and Fe-P alloys,” Physica B, vol. 348, no. 1–4, pp. 347–352, 2004.
[6]  P. K. Hung, P. H. Kien, and L. T. Vinh, “Evidence of 'microscopic bubbles' and a new diffusion mechanism for amorphous alloys,” Journal of Physics Condensed Matter, vol. 22, no. 3, Article ID 035401, 2010.
[7]  S. Flege, U. Fecher, and H. Hahn, “Diffusion in amorphous NiZrAl alloys,” Journal of Non-Crystalline Solids, vol. 270, no. 1–3, pp. 123–128, 2000.
[8]  T. Schuler, J. Pavlovsky, P. Scharwaechter, W. Ulfert, and W. Frank, “Change of the self-diffusion of Co in CoNbB during transition from the amorphous to the nanocrystalline phase,” Nanostructured Materials, vol. 6, no. 5–8, pp. 863–867, 1995.
[9]  A. Griesche, TH. Zumkley, M. P. Macht, S. Suzuki, and G. Frohberg, “Diffusion of PdCuNiP alloys from the amorphous to the liquid state,” Materials Science and Engineering A, vol. 375–377, no. 1-2, pp. 285–287, 2004.
[10]  S. Chakravarty, M. Gupta, and M. Gupta, “Fe and N self-diffusion in amorphous FeN: a SIMS and neutron reflectivity study,” Acta Materialia, vol. 57, no. 4, pp. 1263–1271, 2009.
[11]  A. van den Beukel and J. Sietsma, “Flow defects and diffusion defects in metallic glasses,” Materials Science and Engineering A, vol. 134, pp. 935–938, 1991.
[12]  A. K. Tyagi, M. P. Macht, and V. Naundorf, “Diffusion coefficients of Ni in FeNiB metallic glass,” Acta Metallurgica Et Materialia, vol. 39, no. 4, pp. 609–617, 1991.
[13]  W. Frank, A. H?rner, P. Scharwaechter, and H. Kronmüller, “Diffusion in amorphous metallic alloys,” Materials Science and Engineering A, vol. 179-180, no. 1, pp. 36–40, 1994.
[14]  R. S. Averback, “Defects and diffusion in amorphous alloys,” MRS Bulletin, p. 47, November 1991.
[15]  Y. Limoge, “Microscopic and macroscopic properties of diffusion in metallic glasses,” Materials Science and Engineering A, vol. 226–228, pp. 228–236, 1997.
[16]  P. K. Hung, H. V. Hue, and L. T. Vinh, “Simulation study of pores and pore clusters in amorphous alloys CoB and FeP,” Journal of Non-Crystalline Solids, vol. 352, no. 30-31, pp. 3332–3338, 2006.
[17]  Y. Limoge and G. Brebec, “Relation between viscosity and diffusion in amorphous metallic alloys,” Acta Metallurgica, vol. 36, no. 3, pp. 665–673, 1988.
[18]  A. Zhu, G. J. Shiflet, and S. J. Poon, “Diffusion in metallic glasses: Analysis from the atomic bond defect perspective,” Acta Materialia, vol. 56, no. 14, pp. 3550–3557, 2008.
[19]  L. D. Van Ee, B. J. Thijsse, and J. Sietsma, “Evidence for two-level states and cooperative atomic jumps in a computer model of amorphous ,” Materials Science and Engineering A, vol. 226–228, pp. 296–300, 1997.
[20]  V. Naundorf, M. P. Macht, A. S. Bakai, and N. Lazarev, “The pre-factor, D, of the diffusion coefficient in amorphous alloys and in grain boundaries,” Journal of Non-Crystalline Solids, vol. 224, no. 2, pp. 122–134, 1998.
[21]  H. Kronmüller, W. Frank, and A. H?rner, “Diffusion and structural-relaxation mechanisms in metallic glasses,” Materials Science and Engineering A, vol. 133, pp. 410–414, 1991.
[22]  D. K. Belashchenko, V. V. Hoang, and P. K. Hung, “Computer simulation of local structure and magnetic properties of amorphous Co-B alloys,” Journal of Non-Crystalline Solids, vol. 276, no. 1, pp. 169–180, 2000.
[23]  P. Lamparter, et al., “X-ray and neutron diffraction studies on amorphous transition metal-boron alloys (Fe-B, Co-B, Ni-B),” Zeitschrift für Naturforschung, vol. 6, p. 165, 1981.
[24]  G. S. Chadha, M. Sakata, N. Cowlam, and H. A. Davies, “A diffraction study of binary metallic glass,” Physica Status Solidi (A), vol. 63, no. 2, pp. 625–630, 1981.
[25]  Y. Waseda and H. S. Chen, “A structural study of metallic glasses containing boron (Fe-B, Co-B and Ni-B),” Physica Status Solidi A, vol. 49, no. 1, pp. 387–392, 1978.
[26]  Y. Wasede, The Structure of Non-Crystalline Materials, McGraw-Hill, New York, NY, USA, 1980.
[27]  Y. Waseda, “The structure of liquids, amorphous solids and solid fast ion conductors,” Progress in Materials Science, vol. 26, no. 1, pp. 1–122, 1981.
[28]  T. Fujiwara and Y. Ishii, “Structural analysis of models for the amorphous metallic alloy Fe P,” Journal of Physics F, vol. 10, no. 9, article no. 008, pp. 1901–1911, 1980.
[29]  J. Pavlovsky, W. Ulfert, and W. Frank, “Self-diffusion of Co in amorphous CoNbB during isothermal crystallization,” Materials Chemistry and Physics, vol. 36, no. 3-4, pp. 383–388, 1994.
[30]  W. D?rner and H. Mehrer, “Tracer diffusion and thermal stability in amorphous Co-Zr and their relevance for solid-state amorphization,” Physical Review B, vol. 44, no. 1, pp. 101–114, 1991.
[31]  J. Horvath and H. Mehrer, “Tracer diffusion of 59Fe in amorphous Fe40Ni40B20,” Crystal Lattice Defects and Amorphous Materials, vol. 13, p. 1, 1986.
[32]  R. W. Cahn, J. E. Evetts, J. Patterson, R. E. Somekh, and C. K. Jackson, “Direct measurement by secondary-ion mass spectrometry of self-diffusion of boron in FeNiB glass,” Journal of Materials Science, vol. 15, no. 3, pp. 702–710, 1980.
[33]  J. Horvath, K. Freitag, and H. Mehrer, “Tracer diffusion of implanted 32P in amorphous Fe40Ni40B20,” Crystal Lattice Defects and Amorphous Materials, vol. 13, p. 15, 1986.
[34]  D. R. Baer, L. R. Pederson, and M. T. Thomas, “Phosphorus diffusion in FeNi-based amorphous alloys,” Materials Science and Engineering, vol. 48, no. 2, pp. 283–290, 1981.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413