全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Adaptive base isolation system to achieve structural resiliency under both short

DOI: 10.1177/1045389X18806403

Keywords: Base isolation system,semi-active control,magneto-rheological damper

Full-Text   Cite this paper   Add to My Lib

Abstract:

Base isolation system is widely used to protect important and essential buildings from seismic hazards. The use of high damping is effective in reducing the resonance effect under long-period earthquake ground motions. However, high damping increases the acceleration demand under short-period ground motions, leading to a higher risk of damage of nonstructural components. Actually, low damping is beneficial to reduce the acceleration demand under short-period ground motions, suggesting the use of adaptive damping control, that is, high damping under long-period motions and low damping under short-period motions. In order to implement this concept, a semi-actively controlled base isolation system is provided in this article along with a new control law based on the transmissibility theory. Unlike existing studies, the proposed method enables a systematic design procedure for base isolated structures with semi-active dampers, which is called the simplified design procedure in this article. The performance of the proposed system is evaluated with numerical simulations for a base isolated three-story building with magneto-rheological dampers. It was shown that the proposed system achieves a high level of performance under long-period ground motions, while maintaining the exceptional performance of a conventional base isolation system with low damping under short-period ground motions

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413