全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Urban climate zone classification using convolutional neural network and ground

DOI: 10.1177/0309133319837711

Keywords: Urban climate,Local Climate Zone,convolutional neural network,transfer learning,Google Street View

Full-Text   Cite this paper   Add to My Lib

Abstract:

Urban climate risks have a wide range of impacts on the health of more than 50% of the world’s population, which is a critical issue relating to climate change. To support urban climate study and categorise different urban environments and their atmospheric impacts in a consistent way, the Local Climate Zone (LCZ) classification scheme has been developed. The World Urban Database and Access Portal Tools project aims to map the LCZ of cities across the globe. However, previous classification approaches based on satellite images have limitations regarding the characterisation of three-dimensional features such as building heights. This study aims to apply convolutional neural networks to classify LCZ types based on ground-level images, which can provide more detail of the urban environments. Validation results have shown an overall accuracy of 69.6%. The new method outperformed previous satellite-based studies for classifying the LCZ types Compact Mid-rise, Sparsely Built, Heavy Industry, and Bare Rock or Paved

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133