全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Personalizing Second

DOI: 10.1177/0272989X19829735

Keywords: network meta-analysis,personalized medicine,shared decision making,type 2 diabetes mellitus

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. Personalizing medical treatment often requires practitioners to compare multiple treatment options, assess a patient’s unique risk and benefit from each option, and elicit a patient’s preferences around treatment. We integrated these 3 considerations into a decision-modeling framework for the selection of second-line glycemic therapy for type 2 diabetes. Methods. Based on multicriteria decision analysis, we developed a unified treatment decision support tool accounting for 3 factors: patient preferences, disease outcomes, and medication efficacy and safety profiles. By standardizing and multiplying these 3 factors, we calculated the ranking score for each medication. This approach was applied to determining second-line glycemic therapy by integrating 1) treatment efficacy and side-effect data from a network meta-analysis of 301 randomized trials (N = 219,277), 2) validated risk equations for type 2 diabetes complications, and 3) patient preferences around treatment (e.g., to avoid daily glucose testing). Data from participants with type 2 diabetes in the U.S. National Health and Nutrition Examination Survey (NHANES 2003–2014, N = 1107) were used to explore variations in treatment recommendations and associated quality-adjusted life-years given different patient features. Results. Patients at the highest microvascular disease risk had glucagon-like peptide 1 agonists or basal insulin recommended as top choices, whereas those wanting to avoid an injected medication or daily glucose testing had sodium-glucose linked transporter 2 or dipeptidyl peptidase 4 inhibitors commonly recommended, and those with major cost concerns had sulfonylureas commonly recommended. By converting from the most common sulfonylurea treatment to the model-recommended treatment, NHANES participants were expected to save an average of 0.036 quality-adjusted life-years per person (about a half month) from 10 years of treatment. Conclusions. Models can help integrate meta-analytic treatment effect estimates with individualized risk calculations and preferences, to aid personalized treatment selection

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133