全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

YIG/Pt异质结中自旋塞贝克效应研究进展
Research Progress of Spin Seebeck Effect in YIG/Pt Heterojunction

DOI: 10.12677/CMP.2020.93006, PP. 42-58

Keywords: 磁振子极化子,自旋塞贝克效应,自旋混合传导,自旋流
Spin Seebeck Effect
, Magnon Polaron, Spin Mixed Conduction, Spin Current

Full-Text   Cite this paper   Add to My Lib

Abstract:

自旋塞贝克效应(SSE)作为产生纯自旋流的一种方式在信息传输、存储及新能源开发和废热利用方面有着广阔的应用前景,但产生的自旋流较弱是这一效应不能广泛应用的最大障碍。研究发现在铁磁绝缘体钇铁石榴石(YIG)中,由SSE产生的自旋流弛豫时间更长且不易受其它效应的影响,所以研究由SSE所产生的自旋流在YIG中的传播尤为重要。本文主要从两个部分概述了SSE所产生自旋流在YIG/Pt异质结的研究现状。第一部分是YIG/Pt异质结中自旋流产生和传播的理论机制,主要从磁振子模型和磁振子–声子相互作用两个角度描述。第二部分是通过对YIG/Pt界面的修饰来提高自旋混合传导,从而提高Pt中探测到的自旋流。
The spin Seebeck effect (SSE), as a way to generate pure spin current, has broad application prospects in information transmission, storage and new energy development and waste heat utilization, but the resulting spin current is weak. In the ferromagnetic insulator yttrium garnet (YIG), the SSE produces a longer spin-flow relaxation time and is less susceptible to contamination by other effects. Therefore, it is particularly important to study the propagation of spin current generated by SSE in YIG. This paper mainly summarizes the research status of STE-generated spin currents in YIG/Pt heterojunctions from two parts. On the one hand, it is the theoretical mechanism of the generation and propagation of spin current in the YIG/Pt heterojunction, which is mainly described from the two aspects of the magnon model and the magnon-phonon interaction. The other part is to improve the spin-mixed conduction by modifying the YIG/Pt interface, thereby increasing the spin current detected in Pt.

References

[1]  Brataas, A., Tserkovnyak, Y. and Gerrit, E.W. (2004) Spin-Pumping in Ferromagnet-Normal Metal Systems. Journal of Magnetism & Magnetic Materials, 272, 1981-1982.
https://doi.org/10.1016/j.jmmm.2003.12.783
[2]  Hirsch, J. (1999) Spin Hall Effect. Physical Review Letters, 83, 1834-1837.
https://doi.org/10.1103/PhysRevLett.83.1834
[3]  Uchida, K., TaKaHashi, S., et al. (2008) Observation of the Spin Seebeck Effect. Nature, 455, 778.
https://doi.org/10.1038/nature07321
[4]  Jaworski, C., Yang, J., Mack, S., et al. (2010) Observation of the Spin-Seebeck Effect in a Ferromagnetic Semiconductor. Nature Materials, 9, 898.
https://doi.org/10.1038/nmat2860
[5]  Uchida, K., Adachi, H., et al. (2010) Observation of Longitudinal Spin-Seebeck Effect in Magnetic Insulators. Applied Physics Letters, 97, Article ID: 172505.
https://doi.org/10.1063/1.3507386
[6]  Rezende, M., Rodrguez-Suárez, R. and Evedo, A. (2016) Diffusive Mag-nonic Spin Transport in Antiferromagnetic Insulators. Physical Review B, 93, Article ID: 054412.
https://doi.org/10.1103/PhysRevB.93.054412
[7]  Prakash, A., Brangham, J., Yang, F., et al. (2016) Spin Seebeck Effect through Antiferromagnetic NiO. Physical Review B, 94, Article ID: 014427.
https://doi.org/10.1103/PhysRevB.94.014427
[8]  Baldrati, L., Schneider, C., Niizeki, T., et al. (2018) Spin Transport in Multilayer Systems with Fully Epitaxial NiO Thin Films. Physical Review B, 98, Article ID: 014409.
https://doi.org/10.1103/PhysRevB.98.014409
[9]  Cai, Y.Z., Li, W.T., Wu, Y., et al. (2018) Magnon-Dragged Magnetoresistance and Spin Seebeck Effect in YIG/IrMn Thin Films. IEEE Transactions on Magnetics, 54, Article ID: 1400705.
https://doi.org/10.1109/TMAG.2018.2846766
[10]  Jiménez-Cavero, P., Lucas, I., Anadón, A., et al. (2017) Spin Seebeck Effect in Insulating Epitaxial γ-Fe2O3 Thin Films. APL Materials, 5, Article ID: 026103.
https://doi.org/10.1063/1.4975618
[11]  Hu, J., Bernevig, B.A. and Wu, C. (2003) Spin Current in Spin-Orbit Coupling Systems. International Journal of Modern Physics B, 17, 5991-6000.
https://doi.org/10.1142/S0217979203023537
[12]  Takahashi, S. and Maekawa, S. (2008) Spin Current in Metals and Superconductors. Journal of the Physical Society of Japan, 77, Article ID: 031009.
https://doi.org/10.1143/JPSJ.77.031009
[13]  Kajiwara, Y., Takahashi, S., Maekawa, S., et al. (2011) Detection of Spin-Wave Spin Current in a Magnetic Insulator. IEEE Transactions on Magnetics, 47, 1591-1594.
https://doi.org/10.1109/TMAG.2011.2118747
[14]  Dyson, F.J. (1956) General Theory of Spin-Wave Interactions. Physical Review, 102, 1217-1230.
https://doi.org/10.1103/PhysRev.102.1217
[15]  Faddeev, L.D. and Takhtajan, L.A. (1981) What Is the Spin of a Spin Wave? Physics Letters A, 85, 375-377.
https://doi.org/10.1016/0375-9601(81)90335-2
[16]  Yakonov, M.I. (1971) Possibility of Orienting Electron Spins with Current. JETP Letters, 13, 467.
[17]  Dyakonov, M.I. (2009) Spin Hall Effect. International Journal of Modern Physics B, 23, 2556-2565.
https://doi.org/10.1142/S0217979209061986
[18]  Schliemann, J. (2012) Spin Hall Effect. International Journal of Modern Physics B, 20, 1015-1036.
https://doi.org/10.1142/S021797920603370X
[19]  Dyakonov, M.I. and Khaetskii, A.V. (2008) Spin Hall Effect. In: Dyakonov, M.I., Ed., Spin Physics in Semiconductors, Springer, Berlin, 211-243.
https://doi.org/10.1007/978-3-540-78820-1_8
[20]  Saitoh, E., Ueda, M., Miyajima, H., et al. (2006) Conversion of Spin Current into Charge Current at Room Temperature: Inverse Spin-Hall Effect. Applied Physics Letters, 88, Article ID: 182509.
https://doi.org/10.1063/1.2199473
[21]  Maekawa (2004) Physics of Transition Metal Oxides. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-662-09298-9
[22]  Uchida, K., Ishida, M., Kikkawa, T., et al. (2014) Longitudinal Spin Seebeck Effect: From Fundamentals to Applications. Journal of Physics: Condensed Matter, 26, Article ID: 343202.
https://doi.org/10.1088/0953-8984/26/34/343202
[23]  Huang, S.Y., Wang, W.G., Lee, S.F., et al. (2011) Intrinsic Spin-Dependent Thermal Transport. Physical Review Letters, 107, Article ID: 216604.
https://doi.org/10.1103/PhysRevLett.107.216604
[24]  Kikkawa, T., Uchida, K., Shiomi, Y., et al. (2013) Longi-tudinal Spin Seebeck Effect Free from the Proximity Nernst Effect. Physical Review Letters, 110, Article ID: 067207.
https://doi.org/10.1103/PhysRevLett.110.067207
[25]  Kikkawa, T., Uchida, K., Daimon, S., et al. (2013) Separa-tion of Longitudinal Spin Seebeck Effect from Anomalous Nernst Effect: Determination of Origin of Transverse Thermoelectric Voltage in Metal/Insulator Junctions. Physical Review B, 88, Article ID: 214403.
https://doi.org/10.1103/PhysRevB.88.214403
[26]  Holanda, J., Alves, S.O., Cunha, R.O., et al. (2017) Longitu-dinal Spin Seebeck Effect in Permalloy Separated from the Anomalous Nernst Effect: Theory and Experiment. Physical Review B, 95, Article ID: 214421.
https://doi.org/10.1103/PhysRevB.95.214421
[27]  Miao, B.F., Huang, S.Y., Qu, D., et al. (2016) Absence of Anomalous Nernst Effect in Spin Seebeck Effect of Pt/YIG. AIP Advances, 6, Article ID: 015018.
https://doi.org/10.1063/1.4941340
[28]  Siegel, G., Prestgard, M.C., Teng, S., et al. (2014) Robust Longitudinal Spin-Seebeck Effect in Bi-YIG Thin Films. Scientific Reports, 4, Article number: 4429.
https://doi.org/10.1038/srep04429
[29]  Niizeki, T., Kikkawa, T., Uchida, K., et al. (2015) Observation of Longi-tudinal Spin-Seebeck Effect in Cobalt-Ferrite Epitaxial Thin Films. AIP Advances, 5, 262.
https://doi.org/10.1063/1.4916978
[30]  Xiao, J., Gerrit, E.W., et al. (2010) Theory of Magnon-Driven Spin See-beck Effect. Physical Review B, 81, Article ID: 214418.
https://doi.org/10.1103/PhysRevB.81.214418
[31]  Beaurepaire, E., Merle, J.C, Daunois, A., et al. (1996) Ultrafast Spin Dynamics in Ferromagnetic Nickel. Physical Review Letters, 76, 4250-4253.
https://doi.org/10.1103/PhysRevLett.76.4250
[32]  Adachi, H., Uchida, K., et al. (2010) Gigantic Enhancement of Spin Seebeck Effect by Phonon Drag. Applied Physics Letters, 97, Article ID: 252506.
https://doi.org/10.1063/1.3529944
[33]  Slack, G.A. and Oliver, D.W. (1971) Thermal Conductivity of Garnets and Phonon Scattering by Rare-Earth Ions. Physical Review B, 4, 592-609.
https://doi.org/10.1103/PhysRevB.4.592
[34]  Chotorlishvili, L., Toklikishvili, Z., et al. (2013) Fokker-Planck Approach to the Theory of the Magnon-Driven Spin Seebeck Effect. Physical Review B, 88, Article ID: 224401.
https://doi.org/10.1103/PhysRevB.88.144429
[35]  Rezende, S.M., Rodríguez-Suárez, R.L., et al. (2015) Bulk Magnon Spin-Current Theory for the Longitudinal Spin-Seebeck Effect. Journal of Magnetism & Magnetic Materials, 400, 71-177.
https://doi.org/10.1016/j.jmmm.2015.07.102
[36]  Takashi, K., Uchida, K., et al. (2015) Critical Suppression of Spin Seebeck Effect by Magnetic Fields. Physical Review B, 92, Article ID: 064413.
https://doi.org/10.1103/PhysRevB.92.064413
[37]  Holanda, J., Maior, D.S., Azevedo, A., et al. (2018) Detecting the Phonon Spin in Magnon-Phonon Conversion Experiments. Nature Physics, 4, 592-609.
[38]  Cheng, T.M., et al. (2007) Effect of Magnon-Phonon Interaction on Transverse Acoustic Phonon Excitation at Finite Temperature. Physica B, 390, 301-308.
https://doi.org/10.1016/j.physb.2006.08.027
[39]  Liao, B., Zhou, J. and Chen, G. (2014) Generalized Two-Temperature Model for Coupled Phonon-Magnon Diffusion. Physical Review Letters, 113, Article ID: 025902.
https://doi.org/10.1103/PhysRevLett.113.025902
[40]  Deymier, P.A., Vasseur, J.O., Runge, K., et al. (2014) Phonon-Magnon Resonant Processes with Relevance to Acoustic Spin Pumping. Physical Review B, 90, Article ID: 224421.
https://doi.org/10.1103/PhysRevB.90.224421
[41]  Agrawal, M., Vasyuchka, V.I., et al. (2013) Direct Measurement of Magnon Temperature: New Insight into Magnon-Phonon Coupling in Magnetic Insulators. Physical Review Letters, 111, Article ID: 107204.
https://doi.org/10.1103/PhysRevLett.111.107204
[42]  Sanders, D.J. and Walton, D. (1977) Effect of Mag-non-Phonon Thermal Relaxation on Heat Transport by Magnons. Physical Review B, 15, 1489-1494.
https://doi.org/10.1103/PhysRevB.15.1489
[43]  Tikhonov, K.S., Sinova, J. and Finkel’stein, A.M. (2013) Spectral Non-Uniform Temperature and Non-Local Heat Transfer in the Spin Seebeck Effect. Nature Communications, 2, 4.
https://doi.org/10.1038/ncomms2945
[44]  Gavrilov, S.S., Brichkin, A.S., Demenev, A.A., et al. (2015) Bistability and Nonequilibrium Transitions in the System of Cavity Polaritons under Nanosecond-Long Resonant Excitation. Physical Review B, 91, Article ID: 104409.
https://doi.org/10.1103/PhysRevB.85.075319
[45]  Gurevich, A.G. and Melkov, G.A. (1996) Magnetization Os-cillations and Waves. CRC Press, New York.
[46]  Kamra, A. and Keshtgar, H. (2015) Coherent Elastic Excitation of Spin Waves. Physical Review B, 91, Article ID: 104409.
https://doi.org/10.1103/PhysRevB.91.104409
[47]  Flebus, B., Shen, K., Kikkawa, T., et al. (2017) Magnon-Polaron Transport in Magnetic Insulators. Physical Review B, 95, Article ID: 144420.
https://doi.org/10.1103/PhysRevB.95.144420
[48]  Flebus, B. (2016) Magnon Polarons in the Spin Seebeck Effect. Physical Review Letters, 17, Article ID: 207203.
[49]  Perera, D., Landau, D.P., Nicholson, D.M., et al. (2014) Phonon-Magnon Interactions in Body Centered Cubic Iron: A Combined Molecular and Spin Dynamics Study. Journal of Applied Physics, 115, 17D124.
https://doi.org/10.1063/1.4863488
[50]  Jungfleisch, M.B., Lauer, V., Neb, R., et al. (2013) Improvement of the Yttrium Iron Garnet/Platinum Interface for Spin Pumping-Based Applications. Applied Physics Letters, 103, Article ID: 022411.
https://doi.org/10.1063/1.4813315
[51]  Qiu, Z., Ando, K., Uchida, K., et al. (2013) Spin Mixing Conductance at a Well-Controlled Platinum/Yttrium Iron Garnet Interface. Applied Physics Letters, 103, Article ID: 092404.
https://doi.org/10.1063/1.4819460
[52]  Iwasaki, Y., Ishida, M., Kirihara, A., et al. (2016) Improvement of Mixing Conductance and Spin-Seebeck Effect at Fe Interface Treatment. MRS Advances, 1, 3959-3964.
https://doi.org/10.1557/adv.2016.331
[53]  Yuasa, H., Tamae, K. and Onizuka, N. (2017) Spin Mixing Conductance Enhancement by Increasing Magnetic Density. AIP Advances, 7, Article ID: 055928.
https://doi.org/10.1063/1.4977496
[54]  Das, R., et al. (2018) Enhanced Room-Temperature Spin Seebeck Effect in a YIG/C60/Pt Layered Heterostructure. AIP Advances, 8, Article ID: 055906.
https://doi.org/10.1063/1.5007233
[55]  Lin, W., Chen, K., Zhang, S., et al. (2016) Enhancement of Thermally Injected Spin Current through an Antiferromagnetic Insulator. Physical Review Letters, 116, Article ID: 186601.
https://doi.org/10.1103/PhysRevLett.116.186601
[56]  Rina, T., Yuki, S. and Yukitoshi, M. (2018) Nonreciprocal Spin Seebeck Effect in Antiferromagnets. Physical Review B, 98, Article ID: 020401.
https://doi.org/10.1103/PhysRevB.98.020401

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413