全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Intertidal Biodiversity and Their Response to Climatic Variables, Temperature and pH—What We Know

DOI: 10.4236/ojms.2020.104016, PP. 203-217

Keywords: Climatic Variables, Temperature, pH, Salinity, Marine, Biodiversity

Full-Text   Cite this paper   Add to My Lib

Abstract:

As per the Essential Climate Variables (ESV) of World Meterological Organisation (WMO), the physical, chemical and biological variables critically contribute to the earth’s climate. Among them, the variables such as temperature and pH in the marine environment may affect seriously and in turn it has an impact on the biota, especially in the intertidal environment, where it has brunt force. According to United Nations Framework Convention on Climate Change (UNFCCC), the datasets should provide the empirical evidence needed to predict the climate change and evoluate the mitigation and adaptation measures. Under this context, a review was carried out to know what extent marine scientists understand this factor and what level the biodiversity was evoluated and its impact was analysed in this article. Based on the existing literature review, it was understood that only a few groups that also only few species from these groups were studied in this aspect. The remaining groups and their species and their basic trophic were not evolved in this aspect. So, the marine scientific community, environmentalist and policy makers should take stock on this aspect and give thrust on this study.

References

[1]  WMO World Meterological Organisation (2020).
https://public.wmo.int/en/programmes/global-climate-observing-system/essential-climate-variables
[2]  IPCC (2007) Intergovernmental Panel on Climate Change (2007). Fourth Assessment Report. Intergovernmental Panel on Climate Change Secretariat, Geneva.
http://www.ipcc.ch
https://doi.org/10.1017/CBO9780511546013
[3]  Hughes, L. (2000) Biological Consequences of Global Warming: Is the Signal Already Apparent? Trends in Ecology & Evolution, 15, 56-61.
https://doi.org/10.1016/S0169-5347(99)01764-4
[4]  Davis, M.B. and Shaw, R.G. (2001) Range Shifts and Adaptive Responses to Quaternary Climate Change. Science, 292, 673-679.
https://doi.org/10.1126/science.292.5517.673
[5]  Parmesan, C. and Yohe, G. (2003) A Globally Coherent Fingerprint of Climate Change Impacts across Natural Systems. Nature, 421, 37-42.
https://doi.org/10.1038/nature01286
[6]  Root, T.L., Price, J.T., Hall, K.R., Schneider, S.H., Rosenzweig, C. and Pounds, J.A. (2003) Fingerprints of Global Warming on Wild Animals and Plants. Nature, 421, 57-60.
https://doi.org/10.1038/nature01333
[7]  Parmesan, C. (2005) Biotic Response: Range and Abundance Changes. In: Lovejoy, T.E. and Hannah, L., Eds., Climate Change and Biodiversity, Yale University Press, New Haven, 41-55.
[8]  Rosenzweig, C., Karoly, D., Vicarelli, M., Neofotis, P., Wu, Q. and Casassa, G. (2008) Attributing Physical and Biological Impacts to Anthropogenic Climate Change. Nature, 453, 353-357.
https://doi.org/10.1038/nature06937
[9]  Southward, A.J., Hawkins, S.J. and Burrows, M.T. (1995) Seventy Years’ Observations of Changes in Distribution and Abundance of Zooplankton and Intertidal Organisms in the Western English Channel in Relation to Rising Sea Temperature. Journal of Thermal Biology, 20, 127-155.
https://doi.org/10.1016/0306-4565(94)00043-I
[10]  Hoegh-Guldberg, O. and Bruno, J.F. (2010) The Impact of Climate Change on the World’s Marine Ecosystems. Science, 328, 1523-1528.
https://doi.org/10.1126/science.1189930
[11]  Sorte, C.J.B., Williams, S.L. and Carlton, J.T. (2010) Marine Range Shifts and Species Introductions: Comparative Spread Rates and Community Impacts. Global Ecology and Biogeography, 19, 303-316.
https://doi.org/10.1111/j.1466-8238.2009.00519.x
[12]  Somero, G.N. (2010) The Physiology of Climate Change: How Potentials for Acclimatization and Genetic Adaptation Will Determine “Winners” and “Losers”. Journal of Experimental Biology, 213, 912-920.
https://doi.org/10.1242/jeb.037473
[13]  Walther, G.R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.J.C., et al. (2002) Ecological Responses to Recent Climate Change. Nature, 416, 389-395.
https://doi.org/10.1038/416389a
[14]  Thomas, C.D., Cameron, A., Green, R.E., Bakkenes, M., Beaumont, L.J., Collingham, Y.C., et al. (2004) Extinction Risk from Climate Change. Nature, 427, 145-147.
https://doi.org/10.1038/nature02121
[15]  Parmesan, C. (2006) Ecological and Evolutionary Responses to Recent Climate Change. Annual Review of Ecology, Evolution, and Systematics, 37, 637-669.
https://doi.org/10.1146/annurev.ecolsys.37.091305.110100
[16]  Hickling, R., Roy, D.B., Hill, J.K., Fox, R. and Thomas, C.D. (2006) The Distributions of a Wide Range of Taxonomic Groups Are Expanding Polewards. Global Change Biology, 12, 450-455.
https://doi.org/10.1111/j.1365-2486.2006.01116.x
[17]  Thomas, C.D. (2010) Climate, Climate Change and Range Boundaries. Diversity and Distributions, 16, 488-495.
https://doi.org/10.1111/j.1472-4642.2010.00642.x
[18]  Sunday, J.M., Bates, A.E. and Dulvy, N.K. (2012) Thermal Tolerance and the Global Redistribution of Animals. Nature Climate Change, 2, 686-690.
https://doi.org/10.1038/nclimate1539
[19]  Kordas, R.L., Harley, C.D.G. and O’Connor, M.I. (2011) Community Ecology in a Warming World: The Influence of Temperature on Interspecific Interactions in Marine Systems. Journal of Experimental Marine Biology and Ecology, 400, 218-226.
https://doi.org/10.1016/j.jembe.2011.02.029
[20]  Crisp, D.J. and Southward, A.J. (1958) The Distribution of Intertidal Organisms along the Coast of the English Channel. Journal of Marine Biological Association, 37, 157-208.
https://doi.org/10.1017/S0025315400014909
[21]  BD Biological Dictionary 2020.
https://biologydictionary.net/intertidal-zone
[22]  Cain, S.A. (1944) Foundations of Plant Geography. Harper Brothers, New York, London.
[23]  Atkinson, T.C., Briffa, K.R. and Coope, G.R. (1987) Seasonal Temperatures in Britain during the Past 22,000 Years, Reconstructed Using Beetle Remains. Nature, 325, 587-592.
https://doi.org/10.1038/325587a0
[24]  Fly, E.K., Monaco, C.J., Oicebourde, S. and Tullis, A. (2012) The Influence of Intertidal Location and Temperature on the Metabolic Cost of Emersion in Pisaster ochraceus. Journal of Experimental Marine Biology and Ecology, 422-423, 20-28.
https://doi.org/10.1016/j.jembe.2012.04.007
[25]  Carr, M.H., Neigel, J.E., Estes, J.A., Andelman, S., Warner, R.R. and Largier, J.L. (2003) Comparing Marine and Terrestrial Ecosystms: Implications for the Design of Coastal Marine Reserves. Ecological Applications, 13, 90-107.
https://doi.org/10.1890/1051-0761(2003)013[0090:CMATEI]2.0.CO;2
[26]  Helmuth, B.T. and Denny, M.W. (2003) Predicting Wave Exposure in the Rocky Intertidal Zone: Do Bigger Waves Always Lead to Larger Forces? Limnology and Oceanography, 48, 1338-1345.
https://doi.org/10.4319/lo.2003.48.3.1338
[27]  Smith, P.E. (1985) Year-Class Strength and Survival of O-Group Clupeoids. Canadian Journal of Fisheries and Aquatic Sciences, 42, 69-82.
https://doi.org/10.1139/f85-263
[28]  Barlow, J., Hill, P.S., Forney, K.A. and DeMaster, D.P. (1998) US Pacific Marine Mammal Stock Assessments, 1998, California.
[29]  Jenouvrier, S., Barbraud, C. and Weimerskirch, H. (2003) Effects of Climate Variability on the Temporal Population Dynamics of Southern Fulmars. Journal of Animal Ecology, 72, 576-587.
https://doi.org/10.1046/j.1365-2656.2003.00727.x
[30]  Johnson, C.R., Banks, S.C., Barrett, N.S., Cazassus, F., Dunstan, P.K., Edgar, G.J., Gardner, C., Haddon, M., Helidoniotis, F., Hill, K.L., et al. (2011) Climate Change Cascades: Shifts in Oceanography, Species’ Ranges and Subtidal Marine Community Dynamics in Eastern Tasmania. Journal of Experimental Marine Biology and Ecology, 400, 17-32.
https://doi.org/10.1016/j.jembe.2011.02.032
[31]  Helmuth, B. (1999) Thermal Biology of Rocky Intertidal Mussels: Quantifying Body Temperatures Using Climatological Data. Ecology, 80, 15-34.
https://doi.org/10.1890/0012-9658(1999)080[0015:TBORIM]2.0.CO;2
[32]  Findlay, H.S., Kendall, M.A., Spicer, J.I. and Widdicombe, S. (2009) Future High CO2 in the Intertidal May Compromise Adult Barnacle (Semibalanus balanoides) Survival and Embryo Development Rate. Marine Ecology Progress Series, 389, 193-202.
https://doi.org/10.3354/meps08141
[33]  Mieszkowska, N., Firth, L. and Bentley, M. (2013) Impacts of Climate Change on Intertidal Habitats. Marine Climate Change Impacts Partnership: Science Review, 2013, 180-192.
[34]  Berge, J., Bjerkeng, B., Pettersen, O. and Schaanning, M.S. (2006) Effects of Increased Sea Water Concentrations of CO2 on Growth of the Bivalve Mytilus edulis. Chemosphere, 62, 681-687.
https://doi.org/10.1016/j.chemosphere.2005.04.111
[35]  Beesley, A., Lowe, D.M., Pascoe, C.K. and Widdicombe, S. (2008) Effects of CO2-Induced Seawater Acidification on the Health of Mytilus edulis. Climate Research, 37, 215-225.
https://doi.org/10.3354/cr00765
[36]  Thomsen, J., Gutowska, M.A., Saph.rster, J., Heinemann, A., Trubenbach, K., Fietzke, J., Hiebenthal, C., Eisenhauer, A., Krtzinger, A., Wahl, M. and Melzner, F. (2010) Calcifying Invertebrates Succeed in a Naturally CO2-Rich Coastal Habitat But Are Threatened by High Levels of Future Acidification. Biogeosciences, 7, 3879-3891.
https://doi.org/10.5194/bg-7-3879-2010
[37]  Porzio, L., Buia, M.C. and Hall-Spencer, J.M. (2011) Effects of Ocean Acidification on Macroalgal Communities. Journal of Experimental Marine Biology and Ecology, 400, 278-287.
https://doi.org/10.1016/j.jembe.2011.02.011
[38]  Podrabsky, J.E. and Somero, G.N. (2004) Changes in Gene Expression Associated with Acclimation to Constant Temperatures and Fluctuating Daily Temperatures in an Annual Killifish Austrofundulus limnaeus. Journal of Experimental Biology, 207, 2237-2254.
https://doi.org/10.1242/jeb.01016
[39]  Tait, L.W. and Schiel, D.R. (2013) Impacts of Temperature on Primary Productivity and Respiration in Naturally Structured Macroalgal Assemblages. PLoS ONE, 8, e74413.
https://doi.org/10.1371/journal.pone.0074413
[40]  Chomsky, O., Kamenir, Y., Hyams, M., Dubinsky, Z. and Chadwick-Furman, N.E. (2004) Effects of Feeding Regimeon Growth Rate in the Mediterranean Sea Anemone Actinia equina. Journal of Experimental Marine Biology and Ecology, 299, 217-229.
https://doi.org/10.1016/j.jembe.2003.09.009
[41]  Verde, E.A. and McCloskey, L.R. (1996) Photosynthesis and Respiration of Two Species of Algal Symbionts in the Anemone Anthopleura elegantissima (Brandt, 1835). Journal of Experimental Marine Biology and Ecology, 195, 187-202.
https://doi.org/10.1016/0022-0981(95)00080-1
[42]  Bergschneider, H. and Muller-Parker, G. (2008) Nutritional Role of Two Algal Symbionts in the Temperate Sea Anemone Anthopleura elegantissima Brandt. Biological Bulletin, 215, 73-88.
https://doi.org/10.2307/25470685
[43]  Orr, J.C., Fabry, V.J., Aumont, O., Bopp, L., Doney, S.C., Feely, R.A., Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., et al. (2005) Anthropogenic Ocean Acidification over the Twenty-First Century and Its Impact on Calcifying Organisms. Nature, 437, 681-686.
https://doi.org/10.1038/nature04095
[44]  Meehl, G.A., Stocker, T.F., Collins, W.D., Friedlingstein, P. and Gaye, A.T. (2007) Contribution of Working Group I in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In the Physical Science Basis. Cambridge University Press, Cambridge.
[45]  Feely, R.A., Sabine, C.L., Hernandez-Ayon, J.M., Ianson, D. and Hales, B. (2008) Evidence for Upwelling of Corrosive “Acidified” Water onto the Continental Shelf. Science, 320, 1490-1492.
https://doi.org/10.1126/science.1155676
[46]  Sabine, C.L., Feely, R.A., Gruber, N., Key, R.M., Lee, K., Bullister, J.L., Wanninkhof, R., Wong, C.S., Wallace, D.W.R., Tilbrook, B., et al. (2004) The Oceanic Sink for Anthropogenic CO2. Science, 305, 367-371.
https://doi.org/10.1126/science.1097403
[47]  Morris, S. and Taylor, A.C. (1983) Diurnal and Seasonal Variation in Physic-Chemical Conditions within Intertidal Rock Pools. Estuarine, Coastal and Shelf Science, 17, 339-355.
https://doi.org/10.1016/0272-7714(83)90026-4
[48]  Truchot, J.P. (1986) Changes in the Hemolymph Acid-Base State of the Shore Crab Carcinus maenas, Exposed to Simulated Tidepool Conditions. Biological Bulletin, 170, 506-518.
https://doi.org/10.2307/1541858
[49]  Wootton, J.T., Pfister, C.A. and Forester, J.D. (2008) Dynamic Patterns and Ecological Impacts of Declining Ocean pH in a High-Resolution Multi-Year Dataset. Proceedings of the National Academy of Sciences of the United States of America, 105, 18848-18853.
https://doi.org/10.1073/pnas.0810079105
[50]  Hofmann, G.E., Smith, J.E., Johnson, K.S., Send, U., Levin, L.A., Micheli, F., Paytan, A., Price, N.N., Peterson, B., Takeshita, Y., et al. (2011) High-Frequency Dynamics of Ocean pH: A Multi-Ecosystem Comparison. PLoS ONE, 6, e28983.
https://doi.org/10.1371/journal.pone.0028983
[51]  Caldeira, K. and Wickett, M.E. (2003) Oceanography: Anthropogenic Carbon and Ocean pH. Nature, 425, 365.
https://doi.org/10.1038/425365a
[52]  Melzner, F., Gutowska, M.A., Langenbuch, M., Dupont, S., Lucassen, M., Thorndyke, M.C., Bleich, M. and Portner, H.O. (2009) Physiological Basis of High CO2 Tolerance in Marine Ecthothermic Animals: Pre-Adaptation through Lifestyle and Ontogeny? Biogeosciences, 6, 2313-2331.
https://doi.org/10.5194/bg-6-2313-2009
[53]  Whiteley, N.M. (2011) Physiological and Ecological Responses of Crustaceans to Ocean Acidification. Marine Ecology Progress Series, 430, 257-271.
https://doi.org/10.3354/meps09185
[54]  Barry, J.P., Widdicombe, S. and Hall-Spenser, J.M. (2011) Effects of Ocean Acidification on Marine Biodiversity and Ecosystem Function in Ocean Acidification. In: Gattuso, J.-P. and Hansson, L., Eds., Ocean Acidification, Oxford University Press, Oxford, 192-209.
[55]  Portner, H.O. and Farrell, A.P. (2008) Ecology. Physiology and Climate Change. Science, 322, 690-692.
https://doi.org/10.1126/science.1163156
[56]  Kleypas, J.A., Feely, R.A., Fabry, V.J., Langdon, C., Sabine, C.L. and Robbins, L.L. (2006) Impacts of Ocean Acidification on Coral Reefs and Other Marine Calcifiers: a Guide for Future Research. Report of a Workshop. NSF, NOAA and the USGS, St Petersburg.
[57]  Guinotte, J.M. and Fabry, V.J. (2008) Ocean Acidification and Its Potential Effects on Marine Ecosystems. Annals of the New York Academy of Sciences, 1134, 320-342.
https://doi.org/10.1196/annals.1439.013
[58]  Widdicombe, S. and Spicer, J.I. (2008) Predicting the Impact of Ocean Acidification on Benthic Biodiversity: What Can Animal Physiology Tell Us? Journal of Experimental Marine Biology and Ecology, 366, 187-197.
https://doi.org/10.1016/j.jembe.2008.07.024
[59]  Portner, H.O., Gutowska, M., Ishimatsu, A., Lucassen, M., Melzner, F. and Seibel, B. (2011) Effects of Ocean Acidification on Nektonic Organisms. In: Gattuso, J.P. and Hansson, L., Eds., Ocean Acidification, Oxford University Press, Oxford, 154-175.
[60]  Kurihara, H., Matsui, M., Furukawa, H., Hayashi, M. and Ishimatsu, A. (2008) Long-Term Effects of Predicted Future Seawater CO2 Conditions on the Survival and Growth of the Marine Shrimp Palemon pacificus. Journal of Experimental Marine Biology and Ecology, 367, 41-46.
https://doi.org/10.1016/j.jembe.2008.08.016
[61]  Melatunan, S., Calosi, P., Rundle, S.D., Moody, A.J. and Widdicombe, S. (2011) Exposure to Elevated Temperature and PCO2 Reduces Respiration Rate and Energy Status in the Periwinkle Littorina littorea. Physiological and Biochemical Zoology, 84, 583-594.
https://doi.org/10.1086/662680
[62]  Moulin, L., Catarino, A.I., Claessens, T. and Dubois, P. (2010) Effects of Seawater Acidification on Early Development of the Intertidal Sea Urchin Paracentrotus lividus (Lamarck 1816). Marine Pollution Bulletin, 62, 48-54.
https://doi.org/10.1016/j.marpolbul.2010.09.012
[63]  Dupont, S., Ortega-Martínez, O. and Thorndyke, M. (2010) Impact of Near-Future Ocean Acidification on Echinoderms. Ecotoxicology, 19, 449-462.
https://doi.org/10.1007/s10646-010-0463-6
[64]  Kurihara, H. (2008) Effects of CO2-Driven Ocean Acidification on the Early Developmental Stages of Invertebrates. Marine Ecology Progress Series, 373, 275-284.
https://doi.org/10.3354/meps07802
[65]  Ross, P.M., Parker, L., OConnor, W.A. and Bailey, E. (2011) The Impact of Ocean Acidification on Reproduction, Early Development and Settlement of Marine Organisms. Water, 3, 1005-1030.
https://doi.org/10.3390/w3041005
[66]  Dupont, S., Havenhand, J., Thorndyke, W., Peck, L. and Thorndyke, M. (2008) Near-Future of CO2-Driven Ocean Acidification Radically Affects Larval Survival and Development in the Brittlestar Ophiothrix fragilis. Marine Ecology Progress Series, 373, 285-294.
https://doi.org/10.3354/meps07800
[67]  Crim, R.N., Sunday, J.M. and Harley, C.D.G. (2011) Elevated Seawater CO2 Concentrations Impair Larval Development and Reduce Larval Survival in Endangered Northern Abalone (Haliotis kamtschatkana). Journal of Experimental Marine Biology and Ecology, 400, 272-277.
https://doi.org/10.1016/j.jembe.2011.02.002
[68]  Ceballos-Osuna, L., Carter, H.A., Miller, N.A. and Stillman, J.H. (2013) Effects of Ocean Acidification on Early Life-History Stages of the Intertidal Porcelain Crab Petrolisthes cinctipes. The Journal of Experimental Biology, 216, 1405-1411.
https://doi.org/10.1242/jeb.078154
[69]  Byrne, M. (2011) Impact of Ocean Warming and Ocean Acidification on Marine Invertebrates Life History Stages: Vulnerabilities and Potential for Persistence in a Changing Ocean. Oceanography and Marine Biology, 49, 1-42.
https://doi.org/10.1201/b11009-2
[70]  Gaylord, S.A., Palsson, O.S., Garland, E.L., Faurot, K.R., Coble, R.S., Mann, J.D. and Whitehead, W.E. (2011) Mindfulness Training Reduces the Severity of Irritable Bowel Syndrome in Women: Results of a Randomized Controlled Trial. The American Journal of Gastroenterology, 106, 1678-1688.
https://doi.org/10.1038/ajg.2011.184
[71]  Kuffner, I.B., Andersson, A.J., Jokiel, P.L., Rodgers, K.S. and Mackenzie, F.T. (2008) Decreased Abundance of Crustose Coralline Algae Due to Ocean Acidification. Nature Geoscience, 1, 114-117.
https://doi.org/10.1038/ngeo100
[72]  Alenius, B. and Munguia, P. (2012) Effects of pH Variability on the Intertidal Isopod, Paradella dianae. Marine and Freshwater Behaviour and Physiology, 45, 245-259.
https://doi.org/10.1080/10236244.2012.727235
[73]  Bednarsek, N., Tarling, G.A., Bakker, D.C.E., Fielding, S. and Feely, R.A. (2014) Dissolution Dominating Calcification Process in Polar Pteropods Close to the Point of Aragonite Undersaturation. PLoS ONE, 9, e109183.
https://doi.org/10.1371/journal.pone.0109183
[74]  Birkeland, C., Craig, P., Fenner, D., Smith, L., Keine, W.E. and Riegl, B. (2008) Geologic Setting and Ecological Functioning of Coral Reefs in American Samoa. In: Riegl, B. and Dodge, R.E., Eds., Coral Reefs of the USA, Springer, Berlin, 737-761.
[75]  WoRMS Image.
http://www.marinespecies.org/aphia.php?p=image&tid=140656&pic=66399
[76]  Marine Life (2018).
http://www.habitas.org.uk/marinelife/
[77]  Actina equine.
https://w.marlin.ac.ukww/species/detail/1561
[78]  Porcelein crab.
http://www.livt.net/Clt/Ani/Art/Cru/Brc/brc025.jpg
[79]  Nsf.gov.com (2018).
https://www.nsf.gov/news/mmg/mmg_disp.jsp?med_id=61241&from=19.10.2018
[80]  Menzies, R.J. (1962) The Marine Isopod Fauna of Bahia de San Quintin, Baja California, Mexico. Pacific Naturalist, 3, 337-348.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413