Combinatorial chemistry involves the chemical or biological synthesis of diverse variation of the structures of a target molecule and the library is then screened for variants of desirable target properties. The approach has been a focus of research activity in drug discovery and biotechnology. This report is to demonstrate the application of enzyme technology using the concept of combinatorial chemistry as a novel approach for the bioconversion of plant fibers. Wheat insoluble fiber was subjected to combinatorial enzyme digestion to create structural variants of feruloyl oligosaccharides (FOS). Fractionation and screening resulted in the isolation of a fraction of bioactive FOS species showing antimicrobial activity. These results demonstrate the feasibility and usefulness of the combinatorial enzyme technique in the transformation of plant biomass to value-added products.
References
[1]
Wong, D.W.S. and Robertson, D. (1999) Combinatorial Chemistry and Its Applications in Agriculture and Food. In: Shahidi, et al., Eds., Chemicals via Higher Plant Bioengineering, Kluwer Academic/Plenum Publishers, New York, 91-105. https://doi.org/10.1007/978-1-4615-4729-7_8
[2]
Wong, D.W.S. and Robertson, G. (2004) Applying Combinatorial Chemistry and Biology to Food Research. Journal of Agricultural and Food Chemistry, 52, 7187-7198. https://doi.org/10.1021/jf040140i
[3]
Kennedy, J.P., Williams, L., Bridges, T.M., Daniels, R.N., Weaver, D. and Lindsley, G.W. (2008) Application of Combinatorial Chemistry Science on Modern Drug Discovery. Journal of Combinatorial Chemistry, 10, 345-354. https://doi.org/10.1021/cc700187t
[4]
Herrmann, A. (2014) Dynamic Combinatorial/Covalent Chemistry: A Tool to Read, Generate and Modulate the Bioactivity of Compounds and Compound Mixtures. Chemical Society Reviews, 43, 1899-1933. https://doi.org/10.1039/C3CS60336A
[5]
Seneci, P., Fassina, G., Frecer, Y. and Miertus, S. (2014) The Effects of Combinatorial Chemistry and Technologies on Drug Discovery and Biotechnology—A Mini Review. Nova Biotechnologica et Chimica, 13, 87-108. https://doi.org/10.1515/nbec-2015-0001
[6]
Lindell, S.D., Pattenden, L.C. and Shannon, J. (2009) Combinatorial Chemistry in the Agrosciences. Bioorganic & Medicinal Chemistry, 17, 4035-4046. https://doi.org/10.1016/j.bmc.2009.03.027
[7]
Biely, P., Singh, S. and Puchart, V. (2016) Towards Enzymatic Breakdown of Complex Plant Xylan Structure: State of the Art. Biotechnology Advances, 34, 1260-1274. https://doi.org/10.1016/j.biotechadv.2016.09.001
[8]
Miller, G.L. (1959) Use of Dinitrosalicyclic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31, 426-428. https://doi.org/10.1021/ac60147a030
[9]
Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. and Smith, F. (1956) Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28, 350-356. https://doi.org/10.1021/ac60111a017
[10]
Masuko, T., Minami, A., Iwasaki, N., Majima, T., Nishimura, S.-I. and Lee, Y.C. (2005) Carbohydrate Analysis by a Phenol-Sulfuric Acid Method in Microplate Format. Analytical Biochemistry, 239, 69-72. https://doi.org/10.1016/j.ab.2004.12.001
[11]
Bartolome, B., Faulds, B., Kroon, P.A., Waldron, K., Gilbert, H.J., Hazlewood, G. and Williamson, G. (1997) An Aspergillus niger Esterase (Ferulic Acid Esterase III) and a Recombinant Pseudomonas fluorescens subsp. Cellulose Esterase (XylD) Release a 5-5’ Ferulic Dehydrodimer (Diferulic Acid) from Barley and Wheat Cell Walls. Applied and Environmental Microbiology, 63, 208-212. https://doi.org/10.1128/AEM.63.1.208-212.1997
[12]
Nychas, G.J.E. (1995) Natural Antimicrobnials from Plants. In: Gould, G.W., Ed., New Methods of Foods Preservation, Blackie Academic/Chapman & Hall, Glasgow, 53-83, 3-2, 87-108.
[13]
Andrews, J.M. (2001) Determination of Minimum Inhibitory Concentrations. Journal of Antimicrobial Chemotherapy, 48, 5-16. https://doi.org/10.1093/jac/48.suppl_1.5
[14]
Saulnier, L., Vigouroux, J. and Thibault, J.-F. (1995) Isolation and Partial Characterization of Feruloylated Oligosaccharides from Maize Bran. Carbohydrate Research, 272, 241-253. https://doi.org/10.1016/0008-6215(95)00053-V
[15]
Yuan, X., Wang, J. and Yao, H. (2006) Production of Feruloyl Oligosaccharides from Wheat Bran Insoluble Dietery Fibre by Xylanases from Bacillus subtilus. Food Chemistry, 95, 484-492. https://doi.org/10.1016/j.foodchem.2005.01.043
[16]
Rose, D.J. and Inglett, G.E. (2010) Two-Stage Hydrothermal Processing of Wheat (Triticum acestivum) Bran for the Production of Feruloylated Arabinoxylooligosaccharides. Journal of Agricultural and Food Chemistry, 58, 6427-6432. https://doi.org/10.1021/jf100058v
[17]
Ou, J. and Sun, Z. (2014) Feruloylated Oligosaccharides: Sturcture, Metabolism and Function. Journal of Functional Foods, 7, 90-100. https://doi.org/10.1016/j.jff.2013.09.028
[18]
Pollet, A., Delcour, J.A. and Courtin, C.M. (2010) Structural Determinants of the Substrate Specificities of Xylanases from Different Glycoside Hydrolase Families. Critical Reviews in Biotechnology, 30, 176-191. https://doi.org/10.3109/07388551003645599
[19]
Koutaniemi, S. and Tenkanen, M. (2016) Action of Three GH51 and One GH54 α-Arabinofuranosidases on Internally and Terminally Located Arabinofuranosyl Brnahces. Journal of Biotechnology, 229, 22-30. https://doi.org/10.1016/j.jbiotec.2016.04.050
[20]
van den Broek, L.A.M., Lloyd, R.M., Beldman, G., Verdoes, J.C., McCleary, B.C. and Voragen, A.G.J. (2005) Cloning and Characterization of Arbinoxylan Arabinofuranohydrolase-D3 (AXHd3) from Bifidobacterium adolescentis DSM20083. Applied Microbiology and Biotechnology, 67, 641-647. https://doi.org/10.1007/s00253-004-1850-9
[21]
Christakopoulos, P., Katapodis, P., Kalogeris, E., Kekos, D., Macris, B.J., Stamatis, H. and Shaltsa, H. (2003) Antimicrobial Activity of Acidic Xylo-Oligosaccharides Produced by Family 10 and 11 Endoxylanases. International Journal of Biological Macromolecules, 31, 171-175. https://doi.org/10.1016/S0141-8130(02)00079-X
[22]
Chaari, F., Belghith-Ferrdri, L., Zaouri-Ellouzi, S., Driss, D., Bilbech, M., Kallel, F., Bouaziz, F., Mehdi, Y., Ellouz-Chaabouni, S. and Ghorbel, R. (2016) Antibacterial and Antioxidant Properties of Mixed Linkage Beta-Oligosaccharides from Extracted-Glucan Hydrolysed by Penicillium occitanis EGL Lichenasde. Natural Product Research, 30, 1353-1359. https://doi.org/10.1080/14786419.2015.1056185
[23]
Garrote, G., Cruz, J.M., Moure, A., Dominguez, H. and Parajo, J.C. (2004) Antioxidant Activity of Byproducts from the Hydrolytic Processing of Selected Lignocellulosic Materials. Trends in Food Science and Technology, 15, 191-200. https://doi.org/10.1016/j.tifs.2003.09.016
[24]
Aziz, N.H., Farag, S.E., Mousa, L.A. and Abo-Zaid, M.A. (1998) Comparativce Antibacterial and Antifungal Effects of Some Phenolic Compounds. Microbios, 93, 43-54.
[25]
Ishii, T. and Saka, H. (1992) Inhibition of Auxin-Stimulated Elongation of Cells in Rice Lamina Joints by a Feruloylated Arabinoxyl Trisaccharide. Plant and Cell Physiology, 33, 321-324. https://doi.org/10.1093/oxfordjournals.pcp.a078257
[26]
Malunga, L.N., Eck, P. and Beta, T. (2016) Inhibition of Intestinal-Glucosidase and Glucoser Absorption by Feruloylated Arabinoxylan Mono- and Oligosaccharides from Corn Bran and Wheat Aleurone. Journal of Nutrition and Metabolism, 2016, e193532. https://doi.org/10.1155/2016/1932532
[27]
Ou, S.Y., Jackson, G.M., Jiao, X., Chen, J., Wu, J.-Z. and Huang, X.-S. (2007) Protection against Oxidative Stree in Diabetic Rats by Wheat Bran Feruloyl Oligosaccharides. Journal of Agricultural and Food Chemistry, 55, 3191-3195. https://doi.org/10.1021/jf063310v
[28]
Khan, S., Tendervik, A., Sletta, H., Klinkenberg, G., Emanuel, C., Onseyen, E., Myrvold, R., Howe, R.A., Walsh, T.R., Hill, K.E. and Thomas, D.W. (2012) Overcoming Drug Resistance with Alginate Oligosaccharides Able to Potentiate the Action of Selected Antibiotics. Antimicrobial Agents Chemotherapy, 56, 5134-5141. https://doi.org/10.1128/AAC.00525-12
[29]
Tendervik, A., Sletta, H., Klinkenberg, G., Emanuel, C., Powell, L.C., Pritchard, M.F., Khan, S., Craine, K.M., Onseyen, E., Rye, P.D., Wright, C., Thomas, D.W. and Hill, K.E. (2014) Alginate Oligosaccharides Inhibit Fungal Cell Growth and Potentiate the Activity of Antifungals against Candida and Aspergillus spp. PLoS ONE, 9, e112518. https://doi.org/10.1371/journal.pone.0112518
[30]
Wong, D.W.S., Feng, D., Batt, S. and Orts, W. (2018) Combinatorial Enzyme Approach to Produce Oligosaccharides of Diverse Structures for Functional Screen. Advances in Enzyme Regulation, 6, 11-20. https://doi.org/10.4236/aer.2018.62002
[31]
Huyghebaert, G., Ducatelle, R. and Van Immerseel, F. (2011) An Update on Alternatives to Antimicrobial Growth Promoters for Broilers. The Veterinary Journal, 187, 182-188. https://doi.org/10.1016/j.tvjl.2010.03.003
[32]
Mussatto, S.I. and Mancilha, I.M. (2007) Non-Digestible Oligosaccharides: A Review. Carbohydrate Polymers, 68, 587-597. https://doi.org/10.1016/j.carbpol.2006.12.011