Electronic Absorption Spectra and Third-Order Nonlinear Optical Property of Dinaphtho[2,3-b:2’,3’-d]Thiophene-5,7,12,13- Tetraone (DNTTRA) and Its Phenyldiazenyl Derivatives: DFT Calculations
Third-order nonlinear optical (NLO) materials have broad application prospects in high-density data storage, optical computer, modern laser technology, and other high-tech industries. The structures and frequencies of Dinaphtho[2,3-b:2’,3’-d]thiophene-5,7,12,13-tetraone (DNTTRA) and its 36 derivatives containing azobenzene were calculated by using density functional theory B3LYP and M06-2X methods at 6-311++g(d, p) level, respectively. Besides, the atomic charges of natural bond orbitals (NBO) were analyzed. The frontier orbitals and electron absorption spectra of A-G5 molecule were calculated by TD-DFT (TD-B3LYP/6-311++g(d, p) and TD-M06-2X/6-311++g(d, p)). The NLO properties were calculated by effective finite field FF method and self-compiled program. The results show that 36 molecules of these six series are D-π-A-π-D structures. The third-order NLO coefficients γ (second-order hyperpolarizability) of the D series molecules are the largest among the six series, reaching 107 atomic units (10-33 esu) of order of magnitude, showing good third-order NLO properties. Last, the third-order NLO properties of the azobenzene ring can be improved by introducing strong electron donor groups (e.g. -N(CH3)2 or -NHCH3) in the azobenzene ring, so that the third-order NLO materials with good performance can be obtained.
References
[1]
Getmanenko, Y.A., Hales, J.M., Balu, M., Fu, J., Zojer, E., Kwon, O., Mendez, J., Thayumanavan, S., Walker, G., Zhang, Q., Bunge, S.D., Bredas, J.L., Hagan, D.J., Van Stryland, E.W., Barlow, S. and Marder, S.R. (2012) Characterisation of a Dipolar Chromophore with Third-Harmonic Generation Applications in the Near-IR. Journal of Materials Chemistry, 22, 4371-4382. https://doi.org/10.1039/c2jm15599k
[2]
He, G.S., Zhu, J., Baev, A., Samoc, M., Frattarelli, D.L., Watanabe, N., Facchetti, A., Agren, H., Marks, T.J. and Prasad, P.N. (2011) Twisted pi-System Chromophores for All-Optical Switching. Journal of the American Chemical Society, 133, 6675-6680. https://doi.org/10.1021/ja1113112
[3]
Li, Z.A., Wu, W., Ye, C., Qin, J. and Li, Z. (2009) Two Types of Nonlinear Optical Polyurethanes Containing the Same Isolation Groups: Syntheses, Optical Properties, and Influence of Binding Mode. The Journal of Physical Chemistry B, 113, 14943-14949. https://doi.org/10.1021/jp907135f
[4]
Mohbiya, D.R. and Sekar, N. (2018) Electronic Structure and Spectral Properties of Indole Based Fluorescent Styryl Dyes: Comprehensive Study on Linear and Non-Linear Optical Properties by DFT/TDDFT Method. Computational and Theoretical Chemistry, 1139, 90-101. https://doi.org/10.1016/j.comptc.2018.07.015
[5]
Hales, J.M., Matichak, J., Barlow, S., Ohira, S., Yesudas, K., Bredas, J.L., Perry, J.W. and Marder, S.R. (2010) Design of Polymethine Dyes with Large Third-Order Optical Nonlinearities and Loss Figures of Merit. Science, 327, 1485-1488. https://doi.org/10.1126/science.1185117
[6]
Scarpaci, A., Nantalaksaku, A., Hales, J.M., Matichak, J.D., Barlow, S., Rumi, M., Perry, J.W. and Marder, S.R. (2012) Effects of Dendronization on the Linear and Third-Order Nonlinear Optical Properties of Bis(thiopyrylium) Polymethine Dyes in Solution and the Solid State. Chemistry of Materials, 24, 1606-1618. https://doi.org/10.1021/cm3002139
[7]
Shkir, M., AlFaify, S., Arora, M., Ganesh, V., Abbas, H. and Yahia, I.S. (2018) A First Principles Study of Key Electronic, Optical, Second and Third Order Nonlinear Optical Properties of 3-(4-chlorophenyl)-1-(pyridin-3-yl) prop-2-en-1-one: A Novel D-π-A Type Chalcone Derivative. Journal of Computational Electronics, 17, 9-20. https://doi.org/10.1007/s10825-017-1050-3
[8]
Lin, J., Sa, R., Zhang, M. and Wu, K. (2015) Exploring Second-Order Nonlinear Optical Properties and Switching Ability of a Series of Dithienylethene-Containing, Cyclometalated Platinum Complexes: A Theoretical Investigation. The Journal of Physical Chemistry A, 119, 8174-8181. https://doi.org/10.1021/acs.jpca.5b03456
[9]
Bondu, F., Quertinmont, J., Rodriguez, V., Pozzo, J.-L., Plaquet, A., Champagne, B. and Castet, F. (2015) Second-Order Nonlinear Optical Properties of a Dithienylethene-Indolinooxazolidine Hybrid: A Joint Experimental and Theoretical Investigation. Chemistry—A European Journal, 21, 18749-18757. https://doi.org/10.1002/chem.201502728
[10]
Alam, M.M., Kundi, V. and Thankachan, P.P. (2016) Solvent Effects on Static Polarizability, Static First Hyperpolarizability and One- and Two-Photon Absorption Properties of Functionalized Triply Twisted Möbius Annulenes: A DFT Study. Physical Chemistry Chemical Physics, 18, 21833-21842. https://doi.org/10.1039/C6CP02732F
[11]
Teran, N.B., He, G.S., Baev, A., Shi, Y., Swihart, M.T., Prasad, P.N., Marks, T.J. and Reynolds, J.R. (2016) Twisted Thiophene-Based Chromophores with Enhanced Intramolecular Charge Transfer for Cooperative Amplification of Third-Order Optical Nonlinearity. Journal of the American Chemical Society, 138, 6975-6984. https://doi.org/10.1021/jacs.5b12457
[12]
Yang, M., Jacquemin, D. and Champagne, B. (2002) Intramolecular Charge Transfer and First-Order Hyperpolarizability of Planar and Twisted Sesquifulvalenes. Physical Chemistry Chemical Physics, 4, 5566-5571. https://doi.org/10.1039/b207514h
[13]
Gao, J., Cheng, L. and Chen, X. (1999) Synthesis and Properties of Quinone Heterocyclic Organic Third Order Nonlinear Optical Materials. Chinese High Technology Letters, 2, 45-49.
[14]
van Dijk, E.H., Myles, D.J., van der Veen, M.H. and Hummelen, J.C. (2006) Synthesis and Properties of an Anthraquinone-Based Redox Switch for Molecular Electronics. Organic Letters, 8, 2333-2336. https://doi.org/10.1021/ol0606278
[15]
Zhao, L., Wang, A.B., Wang, W.K., Yu, Z.B., Chen, S. and Yang, Y.S. (2012) Preparation and Electrochemical Performance of Aminoanthraquinone Derivative as Cathode Materials in Rechargeable Lithium Batteries. Acta Physico-Chimica Sinica, 28, 596-602.
[16]
El-Aal, R.M.A., Koraiem, A.I.M. and El-Deen, N.S. (2004) Pyrazolo Quinone Heterocyclic Compounds and Metal Complex Derivatives in the Synthesis of Cyanine Dyes. Dyes and Pigments, 63, 301-314. https://doi.org/10.1016/j.dyepig.2004.03.008
[17]
Fujita, T., Atahan-Evrenk, S., Sawaya, N.P.D. and Aspuru-Guzik, A. (2016) Coherent Dynamics of Mixed Frenkel and Charge-Transfer Excitons in Dinaphtho[2,3- b:2’3’-f]thieno[3,2-b]-thiophene Thin Films: The Importance of Hole Delocalization. The Journal of Physical Chemistry Letters, 7, 1374-1380. https://doi.org/10.1021/acs.jpclett.6b00364
[18]
Guo, X., Yao, B., Jiang, G., Cheng, Y., Xie, Z., Wang, L., Ing, X. and Wang, F. (2008) Synthesis and Characterization of Color-Stable Electroluminescent Polymers: Poly(dinaphtho[1,2-a:1’,2’-g]-s-indacene)s. Journal of Polymer Science: Polymer Chemistry, 46, 4866-4878. https://doi.org/10.1002/pola.22821
[19]
Milvich, J., Zaki, T., Aghamohammadi, M., Roedel, R., Kraft, U., Klauk, H. and Burghartz, J.N. (2015) Flexible Low-Voltage Organic Phototransistors Based on Air-Stable Dinaphtho[2,3-b:2’,3’-f]thieno[3,2-b]thiophene (DNTT). Organic Electronics, 20, 63-68. https://doi.org/10.1016/j.orgel.2015.02.007
[20]
Fan, W., Yin, Z., Ma, Y., Wang, B., Chen, S., Tang, C. and Zheng, Q. (2014) Dinaphtho-s-indacene-Based Copolymers for Inverted Organic Solar Cells with High Open-Circuit Voltages. Polymer, 55, 2262-2270. https://doi.org/10.1016/j.polymer.2014.03.017
[21]
Ishino, Y., Miyata, K., Sugimoto, T., Watanabe, K., Matsumoto, Y., Uemura, T. and Takeya, J. (2014) Ultrafast Exciton Dynamics in Dinaphtho[2,3-b:2’3’-f]thieno[3,2- b]-thiophene Thin Films. Physical Chemistry Chemical Physics, 16, 7501-7512. https://doi.org/10.1039/c3cp54157f
[22]
Tabiryan, N., Hrozhyk, U. and Serak, S. (2004) Nonlinear Refraction in Photoinduced Isotropic State of Liquid Crystalline Azobenzenes. Physical Review Letters, 93, Article ID: 113901. https://doi.org/10.1103/PhysRevLett.93.113901
[23]
Jaunet-Lahary, T., Chantzis, A., Chen, K.J., Laurent, A.D. and Jacquemin, D. (2016) Designing Efficient Azobenzene and Azothiophene Nonlinear Optical Photochromes. The Journal of Physical Chemistry C, 118, 28831-28841. https://doi.org/10.1021/jp510581m
[24]
Zhao, F., Wang, C., Zeng, Y., Jin, Z. and Ma, G. (2013) Ultrafast Third-Order Nonlinear Optical Properties of an Azobenzene-Containing Ionic Liquid Crystalline Polymer. Chemical Physics Letters, 558, 100-103. https://doi.org/10.1016/j.cplett.2012.12.043
[25]
Virkki, M., Tuominen, O., Forni, A., Saccone, M., Metrangolo, P., Resnati, G., Kauranen, M. and Priimagi, A. (2015) Halogen Bonding Enhances Nonlinear Optical Response in Poled Supramolecular Polymers. Journal of Materials Chemistry C, 3, 3003-3006. https://doi.org/10.1039/C5TC00484E
[26]
Brzozowski, L. and Sargent, E.H. (2001) Azobenzenes for Photonic Network Applications: Third-Order Nonlinear Optical Properties. Journal of Materials Science: Materials in Electronics, 12, 483-489. https://doi.org/10.1023/A:1012446007088
[27]
Bandara, H.M. and Burdette, S.C. (2012) Photoisomerization in Different Classes of Azobenzene. Chemical Society Reviews, 41, 1809-1825. https://doi.org/10.1039/C1CS15179G
[28]
Li, M.M., Zhu, B.H., Ran, X., Liu, B. and Guo, L.J. (2016) Third Order Nonlinear Optical Properties of New Azobenzene Derivatives. Acta Physica Sinica, 65, Article ID: 024207.
[29]
Li, N., Lu, J., Li, H. and Kang, E.-T. (2011) Nonlinear Optical Properties and Memory Effects of the Azo Polymers Carrying Different Substituents. Dyes and Pigments, 88, 18-24. https://doi.org/10.1016/j.dyepig.2010.04.010
[30]
Zeng, Y., Pan, Z.-H., Zhao, F.-L., Qin, M., Zhou, Y. and Wang, C.-S. (2014) Nonlinear Optical Properties of an Azobenzene Polymer. Chinese Physics B, 23, Article ID: 024212. https://doi.org/10.1088/1674-1056/23/2/024212
[31]
Cai, Z., Zhou, M. and Gao, J. (2010) Studies on the Synthesis and Structure Nonlinear Optical Properties of Anthracene Two Ketones. Acta Photonica Sinica, 39, 823-828. https://doi.org/10.3788/gzxb20103905.0823
[32]
Shahab, S., Filippovich, L., Sheikhi, M., Kumar, R., Dikusar, E., Yahyaei, H. and Muravsky, A. (2017) Polarization, Excited States, Trans-cis Properties and Anisotropy of Thermal and Electrical Conductivity of the 4-(phenyldiazenyl)aniline in PVA Matrix. Journal of Molecular Structure, 1141, 703-709. https://doi.org/10.1016/j.molstruc.2017.04.014
[33]
Sayin, K., Kurtoglu, N., Kose, M., Karakas, D. and Kurtoglu, M. (2016) Computational and Experimental Studies of 2-(E)-hydrazinylidenemethyl-6-methoxy-4-(E)- phenyldiazenyl Phenol and Its Tautomers. Journal of Molecular Structure, 1119, 413-422. https://doi.org/10.1016/j.molstruc.2016.04.097
[34]
Kose, M., Kurtoglu, N., Gumussu, O., Tutak, M., McKee, V., Karakas, D. and Kurtoglu, M. (2013) Synthesis, Characterization and Antimicrobial Studies of 2-{(E)-(2- hydroxy-5-methylphenyl)imino methyl}-4-(E)-phenyldiazenyl Phenol as a Novel Azo-Azomethine Dye. Journal of Molecular Structure, 1053, 89-99. https://doi.org/10.1016/j.molstruc.2013.09.013
[35]
Hristova, S., Deneva, V., Pittelkow, M., Crochet, A., Kamounah, F.S., Fromm, K.M., Hansen, P.E. and Antonov, L. (2018) A Concept for Stimulated Proton Transfer in 1-(phenyldiazenyl)naphthalen-2-ols. Dyes and Pigments, 156, 91-99. https://doi.org/10.1016/j.dyepig.2018.03.070
[36]
Meng, Q.H., Yan, W.F., Yu, M.J. and Huang, D.Y. (2003) A Study of Third-Order Nonlinear Optical Properties for Anthraquinone Derivatives. Dyes and Pigments, 56, 145-149. https://doi.org/10.1016/S0143-7208(02)00123-7
[37]
Chen, Z., Li, Y., Guan, Y. and Li, H. (2019) Rational Design of the Nonlinear Optical Materials Dinaphtho[2,3-b:2’,3’-d]thiophene-5,7,12,13-tetraone (DNTTRA) and Its Phenyldiazenyl Derivatives Using First-Principles Calculations. Journal of Computational Electronics, 18, 6-15. https://doi.org/10.1007/s10825-019-01300-y
[38]
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A.V., Bloino, J., Janesko, B.G., Gomperts, R., Mennucci, B., Hratchian, H.P., Ortiz, J.V., Izmaylov, A.F., Sonnenberg, J.L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V.G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J.A., Jr., J.E.P., Ogliaro, F., Bearpark, M.J., Heyd, J.J., Brothers, E.N., Kudin, K.N., Staroverov, V.N., Keith, T.A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A.P., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Millam, J.M., Klene, M., Adamo, C., Cammi, R., Ochterski, J.W., Martin, R.L., Morokuma, K., Farkas, O., Foresman, J. B. and Fox, D.J. (2016) Gaussian 16. Gaussian, Inc., Wallingford.
[39]
Li, H.P., Chang, Y.H., Zhu, W.S., Zhu, S.W., Jiang, W., Zhang, M., Zhou, Y.W., Xia, J.X. and Li, H.M. (2016) The Selectivity for Sulfur Removal from Oils: An Insight from Conceptual Density Functional Theory. AIChE Journal, 62, 2087-2100. https://doi.org/10.1002/aic.15161