全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Entropic Dynamics for Learning in Neural Networks and the Renormalization Group?

DOI: https://doi.org/10.3390/proceedings2019033010

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study the dynamics of information processing in the continuous depth limit of deep feed-forward Neural Networks (NN) and find that it can be described in language similar to the Renormalization Group (RG). The association of concepts to patterns by NN is analogous to the identification of the few variables that characterize the thermodynamic state obtained by the RG from microstates. We encode the information about the weights of a NN in a Maxent family of distributions. The location hyper-parameters represent the weights estimates. Bayesian learning of new examples determine new constraints on the generators of the family, yielding a new pdf and in the ensuing entropic dynamics of learning, hyper-parameters change along the gradient of the evidence. For a feed-forward architecture the evidence can be written recursively from the evidence up to the previous layer convoluted with an aggregation kernel. The continuum limit leads to a diffusion-like PDE analogous to Wilson’s RG but with an aggregation kernel that depends on the the weights of the NN, different from those that integrate out ultraviolet degrees of freedom. Approximations to the evidence can be obtained from solutions of the RG equation. Its derivatives with respect to the hyper-parameters, generate examples of Entropic Dynamics in Neural Networks Architectures (EDNNA) learning algorithms. For simple architectures, these algorithms can be shown to yield optimal generalization in student- teacher scenarios

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133