|
Effect of Temperature Exposition of Casting Solution on Properties of Polysulfone Hollow Fiber MembranesDOI: https://doi.org/10.3390/fib7120110 Abstract: It was shown for the first time that the conditions of thermal treatment of the casting solution significantly affect the morphology and transport properties of porous, flat, and hollow fiber polysulfone (PSf) membranes. It is ascertained that the main solution components that are subjected to thermo-oxidative destruction are the pore-forming agent polyethylene glycol (PEG) and solvent N-methyl-2-pyrrolidone (NMP). It is proved that hydroxyl groups of PEG actively react in the process of the casting solution thermo-oxidative destruction. It is shown that despite the chemical conversion taking place in the casting solution, their stability towards coagulation virtually does not change. The differences in the membrane morphology associated with the increase of thermal treatment time at 120 °C are not connected to the thermodynamic properties of the casting solutions, but with the kinetics of the phase separation. It is revealed that the change of morphology and transport properties of membranes is connected with the increase of the casting solution viscosity. The rise of solution viscosity resulted in the slowdown of the phase separation and formation of a more densely packed membrane structure with less pronounced macropores. It is determined experimentally that with the increase of casting solution thermal treatment time, the membrane selective layer thickness increases. This leads to the decrease of gas permeance and the rise of the He/CO 2 selectivity for flat and hollow fiber membranes. In the case of hollow fibers, the fall of gas permeance is also connected with the appearance of the sponge-like layer at the outer surface of membranes. The increase of selectivity and decline of permeance indicates the reduction of selective layer pore size and its densification, which agrees well with the calculation results of the average membrane density. The results obtained are relevant to any polymeric casting solution containing NMP and/or PEG and treated at temperatures above 60 °C. View Full-Tex
|