全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Novel Mesoporous Carbon as Potential Conductive Additive for a Li-Ion Battery Cathode

DOI: https://doi.org/10.3390/c5040081

Full-Text   Cite this paper   Add to My Lib

Abstract:

A new mesoporous carbon (MC) is obtained from pyrolysis of resorcinol/formaldehyde resin, polymerized in the presence of tetraethoxysilane and Pluronic F108, followed by pyrolysis at 800 °C and silica removal. The reaction mixture in a molar ratio of 1F108/60resorcinol/292 formaldehyde/16900 H 2O/50 tetraethoxysilane heated at 67 °C produces MC nanoparticles (200 nm average size) exhibiting 3D bimodal mesopores (3.9 and 8.2 nm), 1198 m 2/g surface area, 1.8 cm 3/g pore volume, and important graphitic character for use as a conductive material. Composites LiFePO 4/carbon prepared with MC or commercial Super P, by the slurry method, were tested as coin Li-ion battery (LiB) cathodes. Super P (40 nm average particle size) exhibits better graphitic character, but lower porosity than MC. LiFePO 4/MC shows better specific capacity (161 mAhg ?1) than LiFePO 4/Super P (126 mAhg ?1), with a retention capacity (RC) after cycling at C/10 of 81%. Both composites with MC and Super P show well-distributed particles. According to impedance analysis, MC mesoporosity improves the charge transfer kinetics (CTK) more than Super P, producing a cathode with higher efficiency, although lithium ions’ diffusion decreases because larger MC particles form longer diffusion paths. Owing to the good specific capacity of the LiB cathode prepared with MC, research looking into improving its retention capacity should be a focus. View Full-Tex

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413